-
Notifications
You must be signed in to change notification settings - Fork 6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2d9b735
commit 395ddb0
Showing
7 changed files
with
146 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
:orphan: | ||
|
||
mnist_ptl_mini | ||
~~~~~~~~~~~~~~ | ||
|
||
.. literalinclude:: /../../python/ray/tune/examples/mnist_ptl_mini.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import torch | ||
from torch.nn import functional as F | ||
import pytorch_lightning as pl | ||
from pl_bolts.datamodules import MNISTDataModule | ||
import os | ||
from ray.tune.integration.pytorch_lightning import TuneReportCallback | ||
|
||
import tempfile | ||
from ray import tune | ||
|
||
|
||
class LightningMNISTClassifier(pl.LightningModule): | ||
def __init__(self, config, data_dir=None): | ||
super(LightningMNISTClassifier, self).__init__() | ||
|
||
self.data_dir = data_dir or os.getcwd() | ||
self.lr = config["lr"] | ||
layer_1, layer_2 = config["layer_1"], config["layer_2"] | ||
|
||
# mnist images are (1, 28, 28) (channels, width, height) | ||
self.layer_1 = torch.nn.Linear(28 * 28, layer_1) | ||
self.layer_2 = torch.nn.Linear(layer_1, layer_2) | ||
self.layer_3 = torch.nn.Linear(layer_2, 10) | ||
self.accuracy = pl.metrics.Accuracy() | ||
|
||
def forward(self, x): | ||
batch_size, channels, width, height = x.size() | ||
x = x.view(batch_size, -1) | ||
x = self.layer_1(x) | ||
x = torch.relu(x) | ||
x = self.layer_2(x) | ||
x = torch.relu(x) | ||
x = self.layer_3(x) | ||
x = torch.log_softmax(x, dim=1) | ||
return x | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.Adam(self.parameters(), lr=self.lr) | ||
|
||
def training_step(self, train_batch, batch_idx): | ||
x, y = train_batch | ||
logits = self.forward(x) | ||
loss = F.nll_loss(logits, y) | ||
acc = self.accuracy(logits, y) | ||
self.log("ptl/train_loss", loss) | ||
self.log("ptl/train_accuracy", acc) | ||
return loss | ||
|
||
def validation_step(self, val_batch, batch_idx): | ||
x, y = val_batch | ||
logits = self.forward(x) | ||
loss = F.nll_loss(logits, y) | ||
acc = self.accuracy(logits, y) | ||
return {"val_loss": loss, "val_accuracy": acc} | ||
|
||
def validation_epoch_end(self, outputs): | ||
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() | ||
avg_acc = torch.stack([x["val_accuracy"] for x in outputs]).mean() | ||
self.log("ptl/val_loss", avg_loss) | ||
self.log("ptl/val_accuracy", avg_acc) | ||
|
||
|
||
def train_mnist_tune(config, data_dir=None, num_epochs=10, num_gpus=0): | ||
model = LightningMNISTClassifier(config, data_dir) | ||
dm = MNISTDataModule( | ||
data_dir=data_dir, num_workers=1, batch_size=config["batch_size"]) | ||
metrics = {"loss": "ptl/val_loss", "acc": "ptl/val_accuracy"} | ||
trainer = pl.Trainer( | ||
max_epochs=num_epochs, | ||
gpus=num_gpus, | ||
progress_bar_refresh_rate=0, | ||
callbacks=[TuneReportCallback(metrics, on="validation_end")]) | ||
trainer.fit(model, dm) | ||
|
||
|
||
def tune_mnist(num_samples=10, num_epochs=10, gpus_per_trial=0): | ||
data_dir = os.path.join(tempfile.gettempdir(), "mnist_data_") | ||
# Download data | ||
MNISTDataModule(data_dir=data_dir).prepare_data() | ||
|
||
config = { | ||
"layer_1": tune.choice([32, 64, 128]), | ||
"layer_2": tune.choice([64, 128, 256]), | ||
"lr": tune.loguniform(1e-4, 1e-1), | ||
"batch_size": tune.choice([32, 64, 128]), | ||
} | ||
|
||
trainable = tune.with_parameters( | ||
train_mnist_tune, | ||
data_dir=data_dir, | ||
num_epochs=num_epochs, | ||
num_gpus=gpus_per_trial) | ||
tune.run( | ||
trainable, | ||
resources_per_trial={ | ||
"cpu": 1, | ||
"gpu": gpus_per_trial | ||
}, | ||
metric="loss", | ||
mode="min", | ||
config=config, | ||
num_samples=num_samples, | ||
name="tune_mnist") | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--smoke-test", action="store_true", help="Finish quickly for testing") | ||
args, _ = parser.parse_known_args() | ||
|
||
if args.smoke_test: | ||
tune_mnist(num_samples=1, num_epochs=1, gpus_per_trial=0) | ||
else: | ||
tune_mnist(num_samples=10, num_epochs=10, gpus_per_trial=0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters