Skip to content

This repository contains assignments and materials from the course "Numerical Analysis" for the Computer Engineering program.

Notifications You must be signed in to change notification settings

rafaelfigueredog/NumericalAnalysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Numerical Analysis

This repository contains assignments and materials from the course "Numerical Analysis" for the Computer Engineering program.

The course aims to provide students with the knowledge and tools to solve engineering problems using numerical methods. The assignments in this repository cover a variety of topics, including Jupyter Notebook, Numpy, vectorization, truncation errors, linear system solving, root-finding algorithms, hybrid root-finding algorithms, topic modeling, PageRank algorithm, and linear regression.

Topics

The following topics are covered in this repository:

Introduction to Jupyter Notebook

This section covers the basics of Jupyter Notebook, including how to create and run a notebook, how to use markdown, and how to use code cells.

Numpy

This section covers the basics of Numpy, including how to create arrays, how to manipulate arrays, and how to use Numpy functions.

Vectorization

This section covers the concept of vectorization, which is the process of rewriting a non-vectorized code into a vectorized code. You will learn how to use Numpy to perform vectorized operations.

Truncation Errors

This section covers the concept of truncation errors, which are errors that occur when a mathematical function is approximated by a finite sum or product. You will learn how to calculate truncation errors and how to minimize them.

Linear System Solving

This section covers the basics of solving linear systems, including how to represent a linear system, how to solve it using Gaussian elimination, and how to solve it using LU decomposition.

Root-Finding Algorithms

This section covers the basics of root-finding algorithms, which are numerical methods for finding the roots of a function. You will learn about the Bisection method, the Secant method, and the Newton-Raphson method.

Hybrid Root-Finding Algorithms

This section covers the hybrid root-finding algorithm, which is a combination of the Bisection method and the Newton-Raphson method. You will learn how to implement the hybrid root-finding algorithm and how to choose appropriate initial values.

Topic Modeling

This section covers topic modeling, which is the process of automatically identifying the topics that occur in a collection of documents. You will learn how to use Latent Dirichlet Allocation (LDA) to perform topic modeling.

PageRank Algorithm

This section covers the PageRank algorithm, which is an algorithm used by Google Search to rank websites in their search engine results. You will learn how to implement the PageRank algorithm and how to interpret the results.

Linear Regression

This section covers the basics of linear regression, including how to represent a linear regression model, how to estimate the parameters of the model using the Least Squares method, and how to evaluate the model.

Usage

This repository serves as a reference for the topics covered in the course "Numerical Analysis". You can use the assignments provided to deepen your understanding of the topics and implement them in your own projects.

Contributors

Releases

No releases published

Packages

No packages published