- Abstract: Famous database; from Fisher, 1936
- Creator: R.A. Fisher
- Donor: Michael Marshall (MARSHALL%PLU '@' io.arc.nasa.gov)
This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.
Predicted attribute: class of iris plant.
This is an exceedingly simple domain.
This data differs from the data presented in Fishers article (identified by Steve Chadwick, spchadwick '@' espeedaz.net). The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the fourth feature. The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the second and third features.
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class: -- Iris Setosa -- Iris Versicolour -- Iris Virginica
You can download this dataset at https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
---|---|---|---|---|---|---|---|
v1.5.0 | Dynamic API | Up-to-date | Console app | .csv file | Iris flowers classification | Multi-class classification | Many |
# | Trainer | MicroAccuracy | MacroAccuracy | Duration | #Iteration |
---|---|---|---|---|---|
1 | AveragedPerceptronOva | 0.9433 | 0.9514 | 2.6 | 1 |
2 | SdcaMaximumEntropyMulti | 0.9719 | 0.9773 | 5.0 | 2 |
3 | LightGbmMulti | 0.9616 | 0.9688 | 2.0 | 3 |
4 | SymbolicSgdLogisticRegressionOva | 0.5934 | 0.5600 | 1.3 | 4 |
5 | FastTreeOva | 0.9458 | 0.9537 | 3.5 | 5 |
6 | LinearSvmOva | 0.9545 | 0.9611 | 1.0 | 6 |
7 | LbfgsLogisticRegressionOva | 0.8928 | 0.9167 | 1.2 | 7 |
8 | SgdCalibratedOva | 0.7102 | 0.7372 | 1.5 | 8 |
9 | FastForestOva | 0.9458 | 0.9544 | 3.0 | 9 |
10 | LbfgsMaximumEntropyMulti | 0.9554 | 0.9637 | 0.9 | 10 |
11 | SdcaMaximumEntropyMulti | 0.6686 | 0.6667 | 0.8 | 11 |
12 | LightGbmMulti | 0.9501 | 0.9574 | 2.2 | 12 |
13 | LbfgsMaximumEntropyMulti | 0.9399 | 0.9489 | 0.8 | 13 |
14 | SdcaMaximumEntropyMulti | 0.9600 | 0.9614 | 0.8 | 14 |
15 | LightGbmMulti | 0.9529 | 0.9627 | 1.4 | 15 |
16 | LbfgsMaximumEntropyMulti | 0.9486 | 0.9556 | 0.7 | 16 |
17 | SdcaMaximumEntropyMulti | 0.9176 | 0.9285 | 0.7 | 17 |
18 | LightGbmMulti | 0.9529 | 0.9627 | 1.1 | 18 |
19 | LbfgsMaximumEntropyMulti | 0.9501 | 0.9574 | 0.8 | 19 |
20 | SdcaMaximumEntropyMulti | 0.8690 | 0.8890 | 1.1 | 20 |
21 | LightGbmMulti | 0.9684 | 0.9769 | 3.0 | 21 |
22 | LbfgsMaximumEntropyMulti | 0.9588 | 0.9642 | 0.8 | 22 |
Summary |
---|
ML Task: multiclass-classification |
Dataset: D:\Github\IrisRecognitionWithML.NET\iris.csv |
Label : variety |
Total experiment time : 35.99731 Secs |
Total number of models explored: 22 |
# | Trainer | MicroAccuracy | MacroAccuracy | Duration | #Iteration |
---|---|---|---|---|---|
1 | SdcaMaximumEntropyMulti | 0.9719 | 0.9773 | 5.0 | 1 |
2 | LightGbmMulti | 0.9684 | 0.9769 | 3.0 | 2 |
3 | LightGbmMulti | 0.9616 | 0.9688 | 2.0 | 3 |
4 | SdcaMaximumEntropyMulti | 0.9600 | 0.9614 | 0.8 | 4 |
5 | LbfgsMaximumEntropyMulti | 0.9588 | 0.9642 | 0.8 | 5 |