Skip to content

Commit

Permalink
[lang] Build sparse matrix using ndarray (taichi-dev#6563)
Browse files Browse the repository at this point in the history
Issue: taichi-dev#2906 

### Brief Summary
Replace the array storing triplets in sparse matrix builder with
ndarray. It unifies the sparse matrix builder creation on the CPU and
GPU.

Co-authored-by: Yi Xu <xy_xuyi@foxmail.com>
  • Loading branch information
2 people authored and quadpixels committed May 13, 2023
1 parent d0f082c commit 2953a01
Show file tree
Hide file tree
Showing 7 changed files with 58 additions and 77 deletions.
2 changes: 1 addition & 1 deletion python/taichi/lang/kernel_impl.py
Original file line number Diff line number Diff line change
Expand Up @@ -680,7 +680,7 @@ def func__(*args):
elif isinstance(needed, sparse_matrix_builder):
# Pass only the base pointer of the ti.types.sparse_matrix_builder() argument
launch_ctx.set_arg_uint(actual_argument_slot,
v._get_addr())
v._get_ndarray_addr())
elif isinstance(needed,
ndarray_type.NdarrayType) and isinstance(
v, taichi.lang._ndarray.Ndarray):
Expand Down
4 changes: 4 additions & 0 deletions python/taichi/linalg/sparse_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -260,6 +260,10 @@ def _get_addr(self):
"""Get the address of the sparse matrix"""
return self.ptr.get_addr()

def _get_ndarray_addr(self):
"""Get the address of the ndarray"""
return self.ptr.get_ndarray_data_ptr()

def print_triplets(self):
"""Print the triplets stored in the builder"""
self.ptr.print_triplets()
Expand Down
49 changes: 22 additions & 27 deletions taichi/program/sparse_matrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -79,53 +79,48 @@ SparseMatrixBuilder::SparseMatrixBuilder(int rows,
int cols,
int max_num_triplets,
DataType dtype,
const std::string &storage_format)
const std::string &storage_format,
Program *prog)
: rows_(rows),
cols_(cols),
max_num_triplets_(max_num_triplets),
dtype_(dtype),
storage_format_(storage_format) {
storage_format_(storage_format),
prog_(prog) {
auto element_size = data_type_size(dtype);
TI_ASSERT((element_size == 4 || element_size == 8));
data_base_ptr_ =
std::make_unique<uchar[]>(max_num_triplets_ * 3 * element_size);
ndarray_data_base_ptr_ = std::make_unique<Ndarray>(
prog_, dtype_, std::vector<int>{3 * (int)max_num_triplets_ + 1});
}

template <typename T, typename G>
void SparseMatrixBuilder::print_template() {
void SparseMatrixBuilder::print_triplets() {
num_triplets_ = ndarray_data_base_ptr_->read_int(std::vector<int>{0});
fmt::print("n={}, m={}, num_triplets={} (max={})\n", rows_, cols_,
num_triplets_, max_num_triplets_);
T *data = reinterpret_cast<T *>(data_base_ptr_.get());
for (int64 i = 0; i < num_triplets_; i++) {
fmt::print("({}, {}) val={}\n", ((G *)data)[i * 3], ((G *)data)[i * 3 + 1],
taichi_union_cast<T>(data[i * 3 + 2]));
for (int i = 0; i < num_triplets_; i++) {
auto idx = 3 * i + 1;
auto row = ndarray_data_base_ptr_->read_int(std::vector<int>{idx});
auto col = ndarray_data_base_ptr_->read_int(std::vector<int>{idx + 1});
auto val = ndarray_data_base_ptr_->read_float(std::vector<int>{idx + 2});
fmt::print("[{}, {}] = {}\n", row, col, val);
}
fmt::print("\n");
}

void SparseMatrixBuilder::print_triplets() {
auto element_size = data_type_size(dtype_);
switch (element_size) {
case 4:
print_template<float32, int32>();
break;
case 8:
print_template<float64, int64>();
break;
default:
TI_ERROR("Unsupported sparse matrix data type!");
break;
}
intptr_t SparseMatrixBuilder::get_ndarray_data_ptr() const {
return prog_->get_ndarray_data_ptr_as_int(ndarray_data_base_ptr_.get());
}

template <typename T, typename G>
void SparseMatrixBuilder::build_template(std::unique_ptr<SparseMatrix> &m) {
using V = Eigen::Triplet<T>;
std::vector<V> triplets;
T *data = reinterpret_cast<T *>(data_base_ptr_.get());
auto ptr = get_ndarray_data_ptr();
G *data = reinterpret_cast<G *>(ptr);
num_triplets_ = data[0];
data += 1;
for (int i = 0; i < num_triplets_; i++) {
triplets.push_back(V(((G *)data)[i * 3], ((G *)data)[i * 3 + 1],
taichi_union_cast<T>(data[i * 3 + 2])));
triplets.push_back(
V(data[i * 3], data[i * 3 + 1], taichi_union_cast<T>(data[i * 3 + 2])));
}
m->build_triplets(static_cast<void *>(&triplets));
clear();
Expand Down
11 changes: 6 additions & 5 deletions taichi/program/sparse_matrix.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,30 +19,31 @@ class SparseMatrixBuilder {
int cols,
int max_num_triplets,
DataType dtype,
const std::string &storage_format);
const std::string &storage_format,
Program *prog);

void print_triplets();

intptr_t get_ndarray_data_ptr() const;

std::unique_ptr<SparseMatrix> build();

void clear();

private:
template <typename T, typename G>
void print_template();

template <typename T, typename G>
void build_template(std::unique_ptr<SparseMatrix> &);

private:
uint64 num_triplets_{0};
std::unique_ptr<uchar[]> data_base_ptr_{nullptr};
std::unique_ptr<Ndarray> ndarray_data_base_ptr_{nullptr};
int rows_{0};
int cols_{0};
uint64 max_num_triplets_{0};
bool built_{false};
DataType dtype_{PrimitiveType::f32};
std::string storage_format_{"col_major"};
Program *prog_{nullptr};
};

class SparseMatrix {
Expand Down
8 changes: 5 additions & 3 deletions taichi/python/export_lang.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -398,10 +398,11 @@ void export_lang(py::module &m) {
.def("create_sparse_matrix_builder",
[](Program *program, int n, int m, uint64 max_num_entries,
DataType dtype, const std::string &storage_format) {
TI_ERROR_IF(!arch_is_cpu(program->this_thread_config().arch),
"SparseMatrix Builder only supports CPU for now.");
TI_ERROR_IF(!arch_is_cpu(program->this_thread_config().arch) &&
!arch_is_cuda(program->this_thread_config().arch),
"SparseMatrix only supports CPU and CUDA for now.");
return SparseMatrixBuilder(n, m, max_num_entries, dtype,
storage_format);
storage_format, program);
})
.def("create_sparse_matrix",
[](Program *program, int n, int m, DataType dtype,
Expand Down Expand Up @@ -1204,6 +1205,7 @@ void export_lang(py::module &m) {
// Sparse Matrix
py::class_<SparseMatrixBuilder>(m, "SparseMatrixBuilder")
.def("print_triplets", &SparseMatrixBuilder::print_triplets)
.def("get_ndarray_data_ptr", &SparseMatrixBuilder::get_ndarray_data_ptr)
.def("build", &SparseMatrixBuilder::build)
.def("get_addr", [](SparseMatrixBuilder *mat) { return uint64(mat); });

Expand Down
22 changes: 11 additions & 11 deletions taichi/runtime/llvm/runtime_module/internal_functions.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,15 @@
} \
} while (0)

#define ATOMIC_INSERT(T) \
do { \
auto base_ptr = (int64 *)base_ptr_; \
int64 *num_triplets = base_ptr; \
auto data_base_ptr = *(T **)(base_ptr + 1); \
auto triplet_id = atomic_add_i64(num_triplets, 1); \
data_base_ptr[triplet_id * 3] = i; \
data_base_ptr[triplet_id * 3 + 1] = j; \
data_base_ptr[triplet_id * 3 + 2] = taichi_union_cast<T>(value); \
#define ATOMIC_INSERT(T) \
do { \
auto base_ptr = reinterpret_cast<int##T *>(base_ptr_); \
int##T *num_triplets = base_ptr; \
auto data_base_ptr = base_ptr + 1; \
auto triplet_id = atomic_add_i##T(num_triplets, 1); \
data_base_ptr[triplet_id * 3] = i; \
data_base_ptr[triplet_id * 3 + 1] = j; \
data_base_ptr[triplet_id * 3 + 2] = taichi_union_cast<int##T>(value); \
} while (0);

i32 do_nothing(RuntimeContext *context) {
Expand All @@ -36,7 +36,7 @@ i32 insert_triplet_f32(RuntimeContext *context,
int i,
int j,
float value) {
ATOMIC_INSERT(int32);
ATOMIC_INSERT(32);
return 0;
}

Expand All @@ -45,7 +45,7 @@ i32 insert_triplet_f64(RuntimeContext *context,
int i,
int j,
float64 value) {
ATOMIC_INSERT(int64);
ATOMIC_INSERT(64);
return 0;
}

Expand Down
39 changes: 9 additions & 30 deletions tests/python/test_sparse_linear_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,40 +4,16 @@
import taichi as ti
from tests import test_utils

"""
The symmetric positive definite matrix is created in matlab using the following script:
A = diag([1,2,3,4]);
OrthM = [1 0 1 0; -1 -2 0 1; 0 1 -1 0; 0, 1, 0 1];
U = orth(OrthM);
Aarray = U * A * U';
b = [1,2,3,4]';
res = inv(A) * b;
""" # yapf: disable

Aarray = np.array([[
2.73999501130921, 0.518002544441220, 0.745119303009342, 0.0508907745638859
], [0.518002544441220, 1.45111665837647, 0.757997555750432, 0.290885785873098],
[
0.745119303009342, 0.757997555750432, 2.96711176987733,
-0.518002544441220
],
[
0.0508907745638859, 0.290885785873098,
-0.518002544441220, 2.84177656043698
]])

res = np.array([
-0.0754984396447588, 0.469972700892492, 1.18527357933586, 1.57686870529319
])


@pytest.mark.parametrize("dtype", [ti.f32])
@pytest.mark.parametrize("solver_type", ["LLT", "LDLT", "LU"])
@pytest.mark.parametrize("ordering", ["AMD", "COLAMD"])
@test_utils.test(arch=ti.cpu)
def test_sparse_LLT_solver(dtype, solver_type, ordering):
n = 4
Abuilder = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=100)
n = 10
A = np.random.rand(n, n)
A_psd = np.dot(A, A.transpose())
Abuilder = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=300)
b = ti.field(ti.f32, shape=n)

@ti.kernel
Expand All @@ -48,16 +24,19 @@ def fill(Abuilder: ti.types.sparse_matrix_builder(),
for i in range(n):
b[i] = i + 1

fill(Abuilder, Aarray, b)
fill(Abuilder, A_psd, b)
A = Abuilder.build()
print(A)
solver = ti.linalg.SparseSolver(dtype=dtype,
solver_type=solver_type,
ordering=ordering)
solver.analyze_pattern(A)
solver.factorize(A)
x = solver.solve(b)

res = np.linalg.solve(A_psd, b.to_numpy())
for i in range(n):
assert x[i] == test_utils.approx(res[i])
assert x[i] == test_utils.approx(res[i], rel=1.0)


@test_utils.test(arch=ti.cuda)
Expand Down

0 comments on commit 2953a01

Please sign in to comment.