Skip to content

Commit

Permalink
Adding EfficientNetV2 architecture (#5450)
Browse files Browse the repository at this point in the history
* Extend the EfficientNet class to support v1 and v2.

* Refactor config/builder methods and add prototype builders

* Refactoring weight info.

* Update dropouts based on TF config ref

* Update BN eps on TF base_config

* Use Conv2dNormActivation.

* Adding pre-trained weights for EfficientNetV2-s

* Add Medium and Large weights

* Update stats with single batch run.

* Add accuracies in the docs.
  • Loading branch information
datumbox authored Mar 2, 2022
1 parent a2b7075 commit e6d82f7
Show file tree
Hide file tree
Showing 8 changed files with 507 additions and 115 deletions.
14 changes: 13 additions & 1 deletion docs/source/models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ architectures for image classification:
- `ResNeXt`_
- `Wide ResNet`_
- `MNASNet`_
- `EfficientNet`_
- `EfficientNet`_ v1 & v2
- `RegNet`_
- `VisionTransformer`_
- `ConvNeXt`_
Expand Down Expand Up @@ -70,6 +70,9 @@ You can construct a model with random weights by calling its constructor:
efficientnet_b5 = models.efficientnet_b5()
efficientnet_b6 = models.efficientnet_b6()
efficientnet_b7 = models.efficientnet_b7()
efficientnet_v2_s = models.efficientnet_v2_s()
efficientnet_v2_m = models.efficientnet_v2_m()
efficientnet_v2_l = models.efficientnet_v2_l()
regnet_y_400mf = models.regnet_y_400mf()
regnet_y_800mf = models.regnet_y_800mf()
regnet_y_1_6gf = models.regnet_y_1_6gf()
Expand Down Expand Up @@ -122,6 +125,9 @@ These can be constructed by passing ``pretrained=True``:
efficientnet_b5 = models.efficientnet_b5(pretrained=True)
efficientnet_b6 = models.efficientnet_b6(pretrained=True)
efficientnet_b7 = models.efficientnet_b7(pretrained=True)
efficientnet_v2_s = models.efficientnet_v2_s(pretrained=True)
efficientnet_v2_m = models.efficientnet_v2_m(pretrained=True)
efficientnet_v2_l = models.efficientnet_v2_l(pretrained=True)
regnet_y_400mf = models.regnet_y_400mf(pretrained=True)
regnet_y_800mf = models.regnet_y_800mf(pretrained=True)
regnet_y_1_6gf = models.regnet_y_1_6gf(pretrained=True)
Expand Down Expand Up @@ -238,6 +244,9 @@ EfficientNet-B4 83.384 96.594
EfficientNet-B5 83.444 96.628
EfficientNet-B6 84.008 96.916
EfficientNet-B7 84.122 96.908
EfficientNetV2-s 84.228 96.878
EfficientNetV2-m 85.112 97.156
EfficientNetV2-l 85.810 97.792
regnet_x_400mf 72.834 90.950
regnet_x_800mf 75.212 92.348
regnet_x_1_6gf 77.040 93.440
Expand Down Expand Up @@ -439,6 +448,9 @@ EfficientNet
efficientnet_b5
efficientnet_b6
efficientnet_b7
efficientnet_v2_s
efficientnet_v2_m
efficientnet_v2_l

RegNet
------------
Expand Down
3 changes: 3 additions & 0 deletions hubconf.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,9 @@
efficientnet_b5,
efficientnet_b6,
efficientnet_b7,
efficientnet_v2_s,
efficientnet_v2_m,
efficientnet_v2_l,
)
from torchvision.models.googlenet import googlenet
from torchvision.models.inception import inception_v3
Expand Down
22 changes: 21 additions & 1 deletion references/classification/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ Then we averaged the parameters of the last 3 checkpoints that improved the Acc@
and [#3354](https://github.com/pytorch/vision/pull/3354) for details.


### EfficientNet
### EfficientNet-V1

The weights of the B0-B4 variants are ported from Ross Wightman's [timm repo](https://github.com/rwightman/pytorch-image-models/blob/01cb46a9a50e3ba4be167965b5764e9702f09b30/timm/models/efficientnet.py#L95-L108).

Expand All @@ -114,6 +114,26 @@ torchrun --nproc_per_node=8 train.py --model efficientnet_b7 --interpolation bic
--val-resize-size 600 --val-crop-size 600 --train-crop-size 600 --test-only --pretrained
```


### EfficientNet-V2
```
torchrun --nproc_per_node=8 train.py \
--model $MODEL --batch-size 128 --lr 0.5 --lr-scheduler cosineannealinglr \
--lr-warmup-epochs 5 --lr-warmup-method linear --auto-augment ta_wide --epochs 600 --random-erase 0.1 \
--label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 --weight-decay 0.00002 --norm-weight-decay 0.0 \
--train-crop-size $TRAIN_SIZE --model-ema --val-crop-size $EVAL_SIZE --val-resize-size $EVAL_SIZE \
--ra-sampler --ra-reps 4
```
Here `$MODEL` is one of `efficientnet_v2_s` and `efficientnet_v2_m`.
Note that the Small variant had a `$TRAIN_SIZE` of `300` and a `$EVAL_SIZE` of `384`, while the Medium `384` and `480` respectively.

Note that the above command corresponds to training on a single node with 8 GPUs.
For generatring the pre-trained weights, we trained with 4 nodes, each with 8 GPUs (for a total of 32 GPUs),
and `--batch_size 32`.

The weights of the Large variant are ported from the original paper rather than trained from scratch. See the `EfficientNet_V2_L_Weights` entry for their exact preprocessing transforms.


### RegNet

#### Small models
Expand Down
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading

0 comments on commit e6d82f7

Please sign in to comment.