-
Notifications
You must be signed in to change notification settings - Fork 867
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f45e5ea
commit f81c035
Showing
1 changed file
with
265 additions
and
0 deletions.
There are no files selected for viewing
265 changes: 265 additions & 0 deletions
265
examples/object_detector/detectron2/detectron2-handler.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
import io | ||
import json | ||
import time | ||
import torch | ||
import logging | ||
import numpy as np | ||
from os import path | ||
from detectron2.config import get_cfg | ||
from PIL import Image, UnidentifiedImageError | ||
from detectron2.engine import DefaultPredictor | ||
from detectron2.utils.logger import setup_logger | ||
try: | ||
import pillow_heif | ||
import pillow_avif | ||
import pillow_jxl | ||
# Register openers for extended formats | ||
pillow_heif.register_heif_opener() | ||
# For pillow_avif and pillow_jxl, openers are registered upon import | ||
except ImportError as e: | ||
raise ImportError( | ||
"Please install 'pillow-heif', 'pillow-avif', and 'pillow-jxl' to handle extended image formats. " | ||
f"Missing package error: {e}" | ||
) | ||
######################################################################################################################################## | ||
setup_logger() | ||
logger = logging.getLogger(__name__) | ||
logging.basicConfig(level=logging.INFO) | ||
######################################################################################################################################## | ||
class ModelHandler: | ||
""" | ||
A base ModelHandler implementation for loading and running Detectron2 models with TorchServe. | ||
Compatible with both CPU and GPU. | ||
""" | ||
def __init__(self): | ||
""" | ||
Initialize the ModelHandler instance. | ||
""" | ||
self.error = None | ||
self._context = None | ||
self._batch_size = 0 | ||
self.initialized = False | ||
self.predictor = None | ||
self.model_file = "model.pth" | ||
self.config_file = "config.yaml" | ||
self.device = "cpu" | ||
if torch.cuda.is_available(): | ||
self.device = "cuda" | ||
logger.info("Using GPU for inference.") | ||
else: | ||
logger.info("Using CPU for inference.") | ||
|
||
def initialize(self, context): | ||
""" | ||
Load the model and initialize the predictor. | ||
Args: | ||
context (Context): Initial context contains model server system properties. | ||
""" | ||
logger.info("Initializing model...") | ||
|
||
self._context = context | ||
self._batch_size = context.system_properties.get("batch_size", 1) | ||
model_dir = context.system_properties.get("model_dir") | ||
model_path = path.join(model_dir, self.model_file) | ||
config_path = path.join(model_dir, self.config_file) | ||
logger.debug(f"Checking model file: {model_path} exists: {path.exists(model_path)}") | ||
logger.debug(f"Checking config file: {config_path} exists: {path.exists(config_path)}") | ||
if not path.exists(model_path): | ||
error_msg = f"Model file {model_path} does not exist." | ||
logger.error(error_msg) | ||
self.error = error_msg | ||
self.initialized = False | ||
return | ||
if not path.exists(config_path): | ||
error_msg = f"Config file {config_path} does not exist." | ||
logger.error(error_msg) | ||
self.error = error_msg | ||
self.initialized = False | ||
return | ||
try: | ||
cfg = get_cfg() | ||
cfg.merge_from_file(config_path) | ||
cfg.MODEL.WEIGHTS = model_path | ||
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | ||
cfg.MODEL.DEVICE = self.device | ||
self.predictor = DefaultPredictor(cfg) | ||
logger.info("Predictor initialized successfully.") | ||
if self.predictor is None: | ||
raise RuntimeError("Predictor initialization failed, the predictor is None.") | ||
self.initialized = True | ||
logger.info("Model initialization complete.") | ||
except Exception as e: | ||
error_msg = "Error during model initialization" | ||
logger.exception(error_msg) | ||
self.error = str(e) | ||
self.initialized = False | ||
|
||
def preprocess(self, batch): | ||
""" | ||
Transform raw input into model input data. | ||
Args: | ||
batch (List[Dict]): List of raw requests, should match batch size. | ||
Returns: | ||
List[np.ndarray]: List of preprocessed images. | ||
""" | ||
logger.info(f"Pre-processing started for a batch of {len(batch)}.") | ||
|
||
images = [] | ||
for idx, request in enumerate(batch): | ||
request_body = request.get("body") | ||
if request_body is None: | ||
error_msg = f"Request {idx} does not contain 'body'." | ||
logger.error(error_msg) | ||
raise ValueError(error_msg) | ||
try: | ||
image_stream = io.BytesIO(request_body) | ||
try: | ||
pil_image = Image.open(image_stream) | ||
pil_image = pil_image.convert("RGB") | ||
img = np.array(pil_image) | ||
img = img[:, :, ::-1] | ||
except UnidentifiedImageError as e: | ||
error_msg = f"Failed to identify image for request {idx}. Error: {e}" | ||
logger.error(error_msg) | ||
raise ValueError(error_msg) | ||
except Exception as e: | ||
error_msg = f"Failed to decode image for request {idx}. Error: {e}" | ||
logger.error(error_msg) | ||
raise ValueError(error_msg) | ||
images.append(img) | ||
except Exception as e: | ||
logger.exception(f"Error preprocessing request {idx}") | ||
raise e | ||
logger.info(f"Pre-processing finished for a batch of {len(batch)}.") | ||
return images | ||
|
||
def inference(self, model_input): | ||
""" | ||
Perform inference on the model input. | ||
Args: | ||
model_input (List[np.ndarray]): List of preprocessed images. | ||
Returns: | ||
List[Dict]: List of inference outputs. | ||
""" | ||
logger.info(f"Inference started for a batch of {len(model_input)}.") | ||
|
||
outputs = [] | ||
for idx, image in enumerate(model_input): | ||
try: | ||
logger.debug(f"Processing image {idx}: shape={image.shape}, dtype={image.dtype}") | ||
output = self.predictor(image) | ||
outputs.append(output) | ||
except Exception as e: | ||
logger.exception(f"Error during inference on image {idx}") | ||
raise e | ||
logger.info(f"Inference finished for a batch of {len(model_input)}.") | ||
return outputs | ||
|
||
def postprocess(self, inference_outputs): | ||
""" | ||
Post-process the inference outputs to a serializable format. | ||
Args: | ||
inference_outputs (List[Dict]): List of inference outputs. | ||
Returns: | ||
List[str]: List of JSON strings containing predictions. | ||
""" | ||
start_time = time.time() | ||
logger.info(f"Post-processing started at {start_time} for a batch of {len(inference_outputs)}.") | ||
responses = [] | ||
for idx, output in enumerate(inference_outputs): | ||
try: | ||
predictions = output["instances"].to("cpu") | ||
logger.debug(f"Available prediction fields: {predictions.get_fields().keys()}") | ||
response = {} | ||
if predictions.has("pred_classes"): | ||
classes = predictions.pred_classes.numpy().tolist() | ||
response["classes"] = classes | ||
if predictions.has("pred_boxes"): | ||
boxes = predictions.pred_boxes.tensor.numpy().tolist() | ||
response["boxes"] = boxes | ||
if predictions.has("scores"): | ||
scores = predictions.scores.numpy().tolist() | ||
response["scores"] = scores | ||
if predictions.has("pred_masks"): | ||
response["masks_present"] = True | ||
responses.append(json.dumps(response)) | ||
except Exception as e: | ||
logger.exception(f"Error during post-processing of output {idx}") | ||
raise e | ||
elapsed_time = time.time() - start_time | ||
logger.info(f"Post-processing finished for a batch of {len(inference_outputs)} in {elapsed_time:.2f} seconds.") | ||
|
||
return responses | ||
|
||
def handle(self, data, context): | ||
""" | ||
Entry point for TorchServe to interact with the ModelHandler. | ||
Args: | ||
data (List[Dict]): Input data. | ||
context (Context): Model server context. | ||
Returns: | ||
List[str]: List of predictions. | ||
""" | ||
logger.info("Handling request...") | ||
start_time = time.time() | ||
if not self.initialized: | ||
self.initialize(context) | ||
if not self.initialized: | ||
error_message = f"Model failed to initialize: {self.error}" | ||
logger.error(error_message) | ||
return [error_message] | ||
|
||
if data is None: | ||
error_message = "No data received for inference." | ||
logger.error(error_message) | ||
return [error_message] | ||
|
||
try: | ||
preprocess_start = time.time() | ||
model_input = self.preprocess(data) | ||
preprocess_time = time.time() - preprocess_start | ||
|
||
inference_start = time.time() | ||
model_output = self.inference(model_input) | ||
inference_time = time.time() - inference_start | ||
|
||
postprocess_start = time.time() | ||
output = self.postprocess(model_output) | ||
postprocess_time = time.time() - postprocess_start | ||
|
||
total_time = time.time() - start_time | ||
logger.info( | ||
f"Handling request finished in {total_time:.2f} seconds. " | ||
f"(Preprocess: {preprocess_time:.2f}s, " | ||
f"Inference: {inference_time:.2f}s, " | ||
f"Postprocess: {postprocess_time:.2f}s)" | ||
) | ||
return output | ||
except Exception as e: | ||
error_message = f"Error in handling request: {str(e)}" | ||
logger.exception(error_message) | ||
return [error_message] | ||
######################################################################################################################################## | ||
_service = ModelHandler() | ||
|
||
def handle(data, context): | ||
""" | ||
Entry point for TorchServe to interact with the ModelHandler. | ||
Args: | ||
data (List[Dict]): Input data. | ||
context (Context): Model server context. | ||
Returns: | ||
List[str]: List of predictions. | ||
""" | ||
return _service.handle(data, context) | ||
######################################################################################################################################## |