Skip to content

Commit

Permalink
[Example] Self-play chess PPO example
Browse files Browse the repository at this point in the history
ghstack-source-id: fd662b1847c6c2839722bfd41df7d6b2498ce701
Pull Request resolved: #2709
  • Loading branch information
vmoens committed Jan 22, 2025
1 parent 18f3fd0 commit 6179523
Showing 1 changed file with 118 additions and 0 deletions.
118 changes: 118 additions & 0 deletions examples/agents/ppo-chess.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import tensordict.nn
import torch
import tqdm
from tensordict.nn import TensorDictSequential as TDSeq, TensorDictModule as TDMod, \
ProbabilisticTensorDictModule as TDProb, ProbabilisticTensorDictSequential as TDProbSeq
from torch import nn
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adam

from torchrl.collectors import SyncDataCollector

from torchrl.envs import ChessEnv, Tokenizer
from torchrl.modules import MLP
from torchrl.modules.distributions import MaskedCategorical
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE
from torchrl.data import ReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement

tensordict.nn.set_composite_lp_aggregate(False)

num_epochs = 10
batch_size = 256
frames_per_batch = 2048

env = ChessEnv(include_legal_moves=True, include_fen=True)

# tokenize the fen - assume max 70 elements
transform = Tokenizer(in_keys=["fen"], out_keys=["fen_tokenized"], max_length=70)

env = env.append_transform(transform)
n = env.action_spec.n
print(env.rollout(10000))

# Embedding layer for the legal moves
embedding_moves = nn.Embedding(num_embeddings=n + 1, embedding_dim=64)

# Embedding for the fen
embedding_fen = nn.Embedding(num_embeddings=transform.tokenizer.vocab_size, embedding_dim=64)

backbone = MLP(out_features=512, num_cells=[512] * 8, activation_class=nn.ReLU)

actor_head = nn.Linear(512, env.action_spec.n)
actor_head.bias.data.fill_(0)

critic_head = nn.Linear(512, 1)
critic_head.bias.data.fill_(0)

prob = TDProb(in_keys=["logits", "mask"], out_keys=["action"], distribution_class=MaskedCategorical, return_log_prob=True)

def make_mask(idx):
mask = idx.new_zeros((*idx.shape[:-1], n + 1), dtype=torch.bool)
return mask.scatter_(-1, idx, torch.ones_like(idx, dtype=torch.bool))[..., :-1]

actor = TDProbSeq(
TDMod(
make_mask,
in_keys=["legal_moves"], out_keys=["mask"]),
TDMod(embedding_moves, in_keys=["legal_moves"], out_keys=["embedded_legal_moves"]),
TDMod(embedding_fen, in_keys=["fen_tokenized"], out_keys=["embedded_fen"]),
TDMod(lambda *args: torch.cat([arg.view(*arg.shape[:-2], -1) for arg in args], dim=-1), in_keys=["embedded_legal_moves", "embedded_fen"],
out_keys=["features"]),
TDMod(backbone, in_keys=["features"], out_keys=["hidden"]),
TDMod(actor_head, in_keys=["hidden"], out_keys=["logits"]),
prob,
)
critic = TDSeq(
TDMod(critic_head, in_keys=["hidden"], out_keys=["state_value"]),
)


print(env.rollout(3, actor))
# loss
loss = ClipPPOLoss(actor, critic)

optim = Adam(loss.parameters())

gae = GAE(value_network=TDSeq(*actor[:-2], critic), gamma=0.99, lmbda=0.95, shifted=True)

# Create a data collector
collector = SyncDataCollector(
create_env_fn=env,
policy=actor,
frames_per_batch=frames_per_batch,
total_frames=1_000_000,
)

replay_buffer0 = ReplayBuffer(storage=LazyTensorStorage(max_size=collector.frames_per_batch//2), batch_size=batch_size, sampler=SamplerWithoutReplacement())
replay_buffer1 = ReplayBuffer(storage=LazyTensorStorage(max_size=collector.frames_per_batch//2), batch_size=batch_size, sampler=SamplerWithoutReplacement())

for data in tqdm.tqdm(collector):
data = data.filter_non_tensor_data()
print('data', data[0::2])
for i in range(num_epochs):
replay_buffer0.empty()
replay_buffer1.empty()
with torch.no_grad():
# player 0
data0 = gae(data[0::2])
# player 1
data1 = gae(data[1::2])
if i == 0:
print('win rate for 0', data0["next", "reward"].sum() / data["next", "done"].sum().clamp_min(1e-6))
print('win rate for 1', data1["next", "reward"].sum() / data["next", "done"].sum().clamp_min(1e-6))

replay_buffer0.extend(data0)
replay_buffer1.extend(data1)

n_iter = collector.frames_per_batch//(2 * batch_size)
for (d0, d1) in tqdm.tqdm(zip(replay_buffer0, replay_buffer1, strict=True), total=n_iter):
loss_vals = (loss(d0) + loss(d1)) / 2
loss_vals.sum(reduce=True).backward()
gn = clip_grad_norm_(loss.parameters(), 100.0)
optim.step()
optim.zero_grad()

0 comments on commit 6179523

Please sign in to comment.