-
Notifications
You must be signed in to change notification settings - Fork 333
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Example] Self-play chess PPO example
ghstack-source-id: fd662b1847c6c2839722bfd41df7d6b2498ce701 Pull Request resolved: #2709
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
import tensordict.nn | ||
import torch | ||
import tqdm | ||
from tensordict.nn import TensorDictSequential as TDSeq, TensorDictModule as TDMod, \ | ||
ProbabilisticTensorDictModule as TDProb, ProbabilisticTensorDictSequential as TDProbSeq | ||
from torch import nn | ||
from torch.nn.utils import clip_grad_norm_ | ||
from torch.optim import Adam | ||
|
||
from torchrl.collectors import SyncDataCollector | ||
|
||
from torchrl.envs import ChessEnv, Tokenizer | ||
from torchrl.modules import MLP | ||
from torchrl.modules.distributions import MaskedCategorical | ||
from torchrl.objectives import ClipPPOLoss | ||
from torchrl.objectives.value import GAE | ||
from torchrl.data import ReplayBuffer, LazyTensorStorage, SamplerWithoutReplacement | ||
|
||
tensordict.nn.set_composite_lp_aggregate(False) | ||
|
||
num_epochs = 10 | ||
batch_size = 256 | ||
frames_per_batch = 2048 | ||
|
||
env = ChessEnv(include_legal_moves=True, include_fen=True) | ||
|
||
# tokenize the fen - assume max 70 elements | ||
transform = Tokenizer(in_keys=["fen"], out_keys=["fen_tokenized"], max_length=70) | ||
|
||
env = env.append_transform(transform) | ||
n = env.action_spec.n | ||
print(env.rollout(10000)) | ||
|
||
# Embedding layer for the legal moves | ||
embedding_moves = nn.Embedding(num_embeddings=n + 1, embedding_dim=64) | ||
|
||
# Embedding for the fen | ||
embedding_fen = nn.Embedding(num_embeddings=transform.tokenizer.vocab_size, embedding_dim=64) | ||
|
||
backbone = MLP(out_features=512, num_cells=[512] * 8, activation_class=nn.ReLU) | ||
|
||
actor_head = nn.Linear(512, env.action_spec.n) | ||
actor_head.bias.data.fill_(0) | ||
|
||
critic_head = nn.Linear(512, 1) | ||
critic_head.bias.data.fill_(0) | ||
|
||
prob = TDProb(in_keys=["logits", "mask"], out_keys=["action"], distribution_class=MaskedCategorical, return_log_prob=True) | ||
|
||
def make_mask(idx): | ||
mask = idx.new_zeros((*idx.shape[:-1], n + 1), dtype=torch.bool) | ||
return mask.scatter_(-1, idx, torch.ones_like(idx, dtype=torch.bool))[..., :-1] | ||
|
||
actor = TDProbSeq( | ||
TDMod( | ||
make_mask, | ||
in_keys=["legal_moves"], out_keys=["mask"]), | ||
TDMod(embedding_moves, in_keys=["legal_moves"], out_keys=["embedded_legal_moves"]), | ||
TDMod(embedding_fen, in_keys=["fen_tokenized"], out_keys=["embedded_fen"]), | ||
TDMod(lambda *args: torch.cat([arg.view(*arg.shape[:-2], -1) for arg in args], dim=-1), in_keys=["embedded_legal_moves", "embedded_fen"], | ||
out_keys=["features"]), | ||
TDMod(backbone, in_keys=["features"], out_keys=["hidden"]), | ||
TDMod(actor_head, in_keys=["hidden"], out_keys=["logits"]), | ||
prob, | ||
) | ||
critic = TDSeq( | ||
TDMod(critic_head, in_keys=["hidden"], out_keys=["state_value"]), | ||
) | ||
|
||
|
||
print(env.rollout(3, actor)) | ||
# loss | ||
loss = ClipPPOLoss(actor, critic) | ||
|
||
optim = Adam(loss.parameters()) | ||
|
||
gae = GAE(value_network=TDSeq(*actor[:-2], critic), gamma=0.99, lmbda=0.95, shifted=True) | ||
|
||
# Create a data collector | ||
collector = SyncDataCollector( | ||
create_env_fn=env, | ||
policy=actor, | ||
frames_per_batch=frames_per_batch, | ||
total_frames=1_000_000, | ||
) | ||
|
||
replay_buffer0 = ReplayBuffer(storage=LazyTensorStorage(max_size=collector.frames_per_batch//2), batch_size=batch_size, sampler=SamplerWithoutReplacement()) | ||
replay_buffer1 = ReplayBuffer(storage=LazyTensorStorage(max_size=collector.frames_per_batch//2), batch_size=batch_size, sampler=SamplerWithoutReplacement()) | ||
|
||
for data in tqdm.tqdm(collector): | ||
data = data.filter_non_tensor_data() | ||
print('data', data[0::2]) | ||
for i in range(num_epochs): | ||
replay_buffer0.empty() | ||
replay_buffer1.empty() | ||
with torch.no_grad(): | ||
# player 0 | ||
data0 = gae(data[0::2]) | ||
# player 1 | ||
data1 = gae(data[1::2]) | ||
if i == 0: | ||
print('win rate for 0', data0["next", "reward"].sum() / data["next", "done"].sum().clamp_min(1e-6)) | ||
print('win rate for 1', data1["next", "reward"].sum() / data["next", "done"].sum().clamp_min(1e-6)) | ||
|
||
replay_buffer0.extend(data0) | ||
replay_buffer1.extend(data1) | ||
|
||
n_iter = collector.frames_per_batch//(2 * batch_size) | ||
for (d0, d1) in tqdm.tqdm(zip(replay_buffer0, replay_buffer1, strict=True), total=n_iter): | ||
loss_vals = (loss(d0) + loss(d1)) / 2 | ||
loss_vals.sum(reduce=True).backward() | ||
gn = clip_grad_norm_(loss.parameters(), 100.0) | ||
optim.step() | ||
optim.zero_grad() |