-
Notifications
You must be signed in to change notification settings - Fork 24.9k
Description
🐛 Bug
I tested with EfficientNet-b0, b3, which were trained around one week ago with promising results with PyTorch 1.2, CUDA 10.0. After I upgraded PyTorch from 1.2 to 1.3, CUDA 10.0 to 10.1, the inferencing using the exact model and weights gave different results. I am not sure is it expected or a bug in 1.3.
To Reproduce
Steps to reproduce the behavior:
- Inferencing with EfficientNet-b0 on PyTorch 1.2, CUDA 10.0.
- Inferencing with EfficientNet-b0 on PyTorch 1.3 CUDA 10.1.
- Comparison.
I got AUC of my model improved or decrease in +/- 0.1 or so.
Expected behavior
It shall be all identical among runs.
Environment
Collecting environment information...
PyTorch version: 1.3.0
Is debug build: No
CUDA used to build PyTorch: 10.1.243
OS: Ubuntu 18.04.3 LTS
GCC version: (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
CMake version: version 3.10.2
Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 10.1.243
GPU models and configuration:
GPU 0: Tesla V100-DGXS-32GB
GPU 1: Tesla V100-DGXS-32GB
GPU 2: Tesla V100-DGXS-32GB
GPU 3: Tesla V100-DGXS-32GB
Nvidia driver version: 418.87.01
cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.2
Versions of relevant libraries:
[pip] efficientnet-pytorch==0.4.0
[pip] numpy==1.16.4
[pip] pytorch-ignite==0.2.1
[pip] pytorch-lightning==0.4.9
[pip] robust-loss-pytorch==0.0.2
[pip] torch==1.3.0
[pip] torch-dct==0.1.5
[pip] torchsummary==1.5.1
[pip] torchvision==0.4.1
[conda] blas 1.0 mkl
[conda] efficientnet-pytorch 0.4.0 pypi_0 pypi
[conda] mkl 2019.4 243
[conda] mkl-service 2.0.2 py37h7b6447c_0
[conda] mkl_fft 1.0.14 py37ha843d7b_0
[conda] mkl_random 1.0.2 py37hd81dba3_0
[conda] pytorch-ignite 0.2.1 pypi_0 pypi
[conda] pytorch-lightning 0.4.9 pypi_0 pypi
[conda] robust-loss-pytorch 0.0.2 pypi_0 pypi
[conda] torch 1.3.0 pypi_0 pypi
[conda] torch-dct 0.1.5 pypi_0 pypi
[conda] torchsummary 1.5.1 pypi_0 pypi
[conda] torchvision 0.4.1 pypi_0 pypi