Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add README to run the LLM fine-tune example on ET #6150

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
128 changes: 128 additions & 0 deletions examples/llm_pte_finetuning/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
# ExecuTorch Finetuning example

In this tutorial, we show how to fine-tune an LLM using executorch.

## Pre-requisites

You will need to have a model's checkpoint, in the Hugging Face format. For example:

```
git clone https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
```

You will need to install [torchtune](https://github.com/pytorch/torchtune) following [its installation instructions](https://github.com/pytorch/torchtune?tab=readme-ov-file#installation).

## Config Files

As mentioned in the previous section, we internally use `torchtune` APIs, and thus, we use config files that follow `torchtune`'s structure. Typically, in the following sections we go through a working example which can be found in the `phi3_config.yaml` config file.

### Tokenizer

We need to define the tokenizer. Let's suppose we would like to use [PHI3 Mini Instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) model from Microsoft. We need to define the tokenizer component:

```
tokenizer:
_component_: torchtune.models.phi3.phi3_mini_tokenizer
path: /tmp/Phi-3-mini-4k-instruct/tokenizer.model
max_seq_len: 1024
```

This will load the tokenizer, and set the max sequence length to 1024. The class that will be instantiated will be [`Phi3MiniTokenizer`](https://github.com/pytorch/torchtune/blob/ee343e61804f9942b2bd48243552bf17b5d0d553/torchtune/models/phi3/_tokenizer.py#L30).

### Dataset

In this example we use the [Alpaca-Cleaned dataset](https://huggingface.co/datasets/yahma/alpaca-cleaned). We need to define the following parameters:

```
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True
batch_size: 1
```

Torchtune supports datasets using huggingface dataloaders, so custom datasets could also be defined. For examples on defining your own datasets, review the [torchtune docs](https://pytorch.org/torchtune/stable/tutorials/datasets.html#hugging-face-datasets).

### Loss

For the loss function, we use PyTorch losses. In this example we use the `CrossEntropyLoss`:

```
loss:
_component_: torch.nn.CrossEntropyLoss
```

### Model

Model parameters can be set, in this example we replicate the configuration for phi3 mini instruct benchmarks:

```
model:
_component_: torchtune.models.phi3.lora_phi3_mini
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
```

### Checkpointer

Depending on how your model is defined, you will need to instantiate different components. In these examples we use checkpoints from HF (hugging face format), and thus we will need to instantiate a `FullModelHFCheckpointer` object. We need to pass the checkpoint directory, the files with the tensors, the output directory for training and the model type:

```
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Phi-3-mini-4k-instruct
checkpoint_files: [
model-00001-of-00002.safetensors,
model-00002-of-00002.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Phi-3-mini-4k-instruct/
model_type: PHI3_MINI
```

### Device

Torchtune supports `cuda` and `bf16` tensors. However, for ExecuTorch training we only support `cpu` and `fp32`:

```
device: cpu
dtype: fp32
```

## Running the example

### Step 1: Generate the ExecuTorch PTE (checkpoint)

The `model_exporter.py` exports the LLM checkpoint into an ExecuTorch checkpoint (.pte). It has two parameters:

* `cfg`: Configuration file
* `output_file`: The `.pte` output path

```
python model_exporter.py --cfg=phi3_config.yaml --output_file=phi3_mini_lora.pte
```

### Step 2: Run the fine-tuning job

To run the fine-tuning job:

```
python runner.py --cfg=phi3_config.yaml --model_file=phi3_mini_lora.pte
```

You need to use **the same** config file from the previous step. The `model_file` arg is the `.pte` model from the previous step.

Example output:

```
Evaluating the model before training...
100%|██████████████████████████████████████████████████████████████████████████████████████| 3/3 [31:23<00:00, 627.98s/it]
Eval loss: tensor(2.3778)
100%|██████████████████████████████████████████████████████████████████████████████████████| 5/5 [52:29<00:00, 629.84s/it]
Losses: [2.7152762413024902, 0.7890686988830566, 2.249271869659424, 1.4777560234069824, 0.8378427624702454]
100%|██████████████████████████████████████████████████████████████████████████████████████| 3/3 [30:35<00:00, 611.90s/it]
Eval loss: tensor(0.8464)
```
Loading