-
Notifications
You must be signed in to change notification settings - Fork 409
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Update the default SingleTaskGP prior #2449
Conversation
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: pytorch/botorch#2449 See title Differential Revision: D60080819
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 See title Differential Revision: D60080819
ab44f02
to
f4eeb4e
Compare
This pull request was exported from Phabricator. Differential Revision: D60080819 |
f4eeb4e
to
979930c
Compare
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: pytorch/botorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
Summary: Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
979930c
to
6276794
Compare
This pull request was exported from Phabricator. Differential Revision: D60080819 |
6276794
to
3138fa4
Compare
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
3138fa4
to
43a6662
Compare
Summary: Pull Request resolved: facebook#2610 X-link: pytorch/botorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
43a6662
to
ef5ab52
Compare
Codecov ReportAll modified and coverable lines are covered by tests ✅
Additional details and impacted files@@ Coverage Diff @@
## main #2449 +/- ##
=======================================
Coverage 99.98% 99.98%
=======================================
Files 190 190
Lines 16740 16741 +1
=======================================
+ Hits 16738 16739 +1
Misses 2 2 ☔ View full report in Codecov by Sentry. |
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
ef5ab52
to
931e96d
Compare
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
931e96d
to
8282c77
Compare
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
8282c77
to
e507d71
Compare
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
e507d71
to
e968e9c
Compare
Summary: Pull Request resolved: facebook#2610 X-link: pytorch/botorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
Summary: Pull Request resolved: facebook#2610 X-link: pytorch/botorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
This pull request was exported from Phabricator. Differential Revision: D60080819 |
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
e968e9c
to
f7732ac
Compare
Summary: X-link: facebook/Ax#2610 Pull Request resolved: pytorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: saitcakmak Differential Revision: D60080819
This pull request was exported from Phabricator. Differential Revision: D60080819 |
f7732ac
to
a4b6bdc
Compare
Summary: Pull Request resolved: #2610 X-link: pytorch/botorch#2449 Update of the default hyperparameter priors for the SingleTaskGP. Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1]. The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems. [1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. _Vanilla Bayesian Optimization Performs Great in High Dimensions_. ICML, 2024. Reviewed By: dme65, saitcakmak Differential Revision: D60080819 fbshipit-source-id: d55ff91dee9949cbd7f5828531644fc001cb3e22
This pull request has been merged in 83bb30c. |
Update of the default hyperparameter priors for the SingleTaskGP.
Full discussion here
Switch from the conventional Scale-Matern kernel with Gamma(3, 6) lengthscale prior is substituted for an RBF Kernel (without a ScaleKernel), and a change from the high-noise Gamma(1.1, 0.05) noise prior of the GaussianLikelihood to a LogNormal prior that prefers lower values. The change is made in accordance with the findings of [1].
The change is made to improve the out-of-the-box performance of the BoTorch models on high-dimensional problems.
[1] Carl Hvarfner, Erik Orm Hellsten, Luigi Nardi. Vanilla Bayesian Optimization Performs Great in High Dimensions. ICML, 2024.