Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add one hot to numeric input transform #1517

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 133 additions & 0 deletions botorch/models/transforms/input.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
from torch import nn, Tensor
from torch.distributions import Kumaraswamy
from torch.nn import Module, ModuleDict
from torch.nn.functional import one_hot


class InputTransform(ABC):
Expand Down Expand Up @@ -1370,3 +1371,135 @@ def _expanded_perturbations(self, X: Tensor) -> Tensor:
else:
p = p(X) if self.indices is None else p(X[..., self.indices])
return p.transpose(-3, -2) # p is batch_shape x n_p x n x d


class OneHotToNumeric(InputTransform, Module):
r"""Transform categorical parameters from a one-hot to a numeric representation.
This assumes that the categoricals are the trailing dimensions.
"""

def __init__(
self,
dim: int,
categorical_features: Optional[Dict[int, int]] = None,
transform_on_train: bool = False,
transform_on_eval: bool = True,
transform_on_fantasize: bool = False,
) -> None:
r"""Initialize.
Args:
dim: The dimension of the one-hot-encoded input.
categorical_features: A dictionary mapping the starting index of each
categorical feature to its cardinality. This assumes that categoricals
are one-hot encoded.
transform_on_train: A boolean indicating whether to apply the
transforms in train() mode. Default: False.
transform_on_eval: A boolean indicating whether to apply the
transform in eval() mode. Default: True.
transform_on_fantasize: A boolean indicating whether to apply the
transform when called from within a `fantasize` call. Default: False.
Returns:
A `batch_shape x n x d'`-dim tensor of where the one-hot encoded
categoricals are transformed to integer representation.
"""
super().__init__()
self.transform_on_train = transform_on_train
self.transform_on_eval = transform_on_eval
self.transform_on_fantasize = transform_on_fantasize
categorical_features = categorical_features or {}
# sort by starting index
self.categorical_features = OrderedDict(
sorted(categorical_features.items(), key=lambda x: x[0])
)
if len(self.categorical_features) > 0:
self.categorical_start_idx = min(self.categorical_features.keys())
# check that the trailing dimensions are categoricals
end = self.categorical_start_idx
err_msg = (
f"{self.__class__.__name__} requires that the categorical "
"parameters are the rightmost elements."
)
for start, card in self.categorical_features.items():
# the end of one one-hot representation should be followed
# by the start of the next
if end != start:
raise ValueError(err_msg)
# This assumes that the categoricals are the trailing
# dimensions
end = start + card
if end != dim:
# check end
raise ValueError(err_msg)
# the numeric representation dimension is the total number of parameters
# (continuous, integer, and categorical)
self.numeric_dim = self.categorical_start_idx + len(categorical_features)

def transform(self, X: Tensor) -> Tensor:
r"""Transform the categorical inputs into integer representation.
Args:
X: A `batch_shape x n x d`-dim tensor of inputs.
Returns:
A `batch_shape x n x d'`-dim tensor of where the one-hot encoded
categoricals are transformed to integer representation.
"""
if len(self.categorical_features) > 0:
X_numeric = X[..., : self.numeric_dim].clone()
idx = self.categorical_start_idx
for start, card in self.categorical_features.items():
X_numeric[..., idx] = X[..., start : start + card].argmax(dim=-1)
idx += 1
return X_numeric
return X

def untransform(self, X: Tensor) -> Tensor:
r"""Transform the categoricals from integer representation to one-hot.
Args:
X: A `batch_shape x n x d'`-dim tensor of transformed inputs, where
the categoricals are represented as integers.
Returns:
A `batch_shape x n x d`-dim tensor of inputs, where the categoricals
have been transformed to one-hot representation.
"""
if len(self.categorical_features) > 0:
self.numeric_dim
one_hot_categoricals = [
# note that self.categorical_features is sorted by the starting index
# in one-hot representation
one_hot(
X[..., idx - len(self.categorical_features)].long(),
num_classes=cardinality,
)
for idx, cardinality in enumerate(self.categorical_features.values())
]
X = torch.cat(
[
X[..., : self.categorical_start_idx],
*one_hot_categoricals,
],
dim=-1,
)
return X

def equals(self, other: InputTransform) -> bool:
r"""Check if another input transform is equivalent.
Args:
other: Another input transform.
Returns:
A boolean indicating if the other transform is equivalent.
"""
return (
type(self) == type(other)
and (self.transform_on_train == other.transform_on_train)
and (self.transform_on_eval == other.transform_on_eval)
and (self.transform_on_fantasize == other.transform_on_fantasize)
and self.categorical_features == other.categorical_features
)
80 changes: 80 additions & 0 deletions test/models/transforms/test_input.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
InputTransform,
Log10,
Normalize,
OneHotToNumeric,
Round,
Warp,
)
Expand Down Expand Up @@ -915,6 +916,85 @@ def test_warp_transform(self):
warp_tf._set_concentration(i=1, value=3.0)
self.assertTrue((warp_tf.concentration1 == 3.0).all())

def test_one_hot_to_numeric(self):
dim = 8
# test exception when categoricals are not the trailing dimensions
categorical_features = {0: 2}
with self.assertRaises(ValueError):
OneHotToNumeric(dim=dim, categorical_features=categorical_features)
# categoricals at start and end of X but not in between
categorical_features = {0: 3, 6: 2}
with self.assertRaises(ValueError):
OneHotToNumeric(dim=dim, categorical_features=categorical_features)
for dtype in (torch.float, torch.double):
categorical_features = {6: 2, 3: 3}
tf = OneHotToNumeric(dim=dim, categorical_features=categorical_features)
tf.eval()
self.assertEqual(tf.categorical_features, {3: 3, 6: 2})
cat1_numeric = torch.randint(0, 3, (3,), device=self.device)
cat1 = one_hot(cat1_numeric, num_classes=3)
cat2_numeric = torch.randint(0, 2, (3,), device=self.device)
cat2 = one_hot(cat2_numeric, num_classes=2)
cont = torch.rand(3, 3, dtype=dtype, device=self.device)
X = torch.cat([cont, cat1, cat2], dim=-1)
# test forward
X_numeric = tf(X)
expected = torch.cat(
[
cont,
cat1_numeric.view(-1, 1).to(cont),
cat2_numeric.view(-1, 1).to(cont),
],
dim=-1,
)
self.assertTrue(torch.equal(X_numeric, expected))

# test untransform
X2 = tf.untransform(X_numeric)
self.assertTrue(torch.equal(X2, X))

# test no
tf = OneHotToNumeric(dim=dim, categorical_features={})
tf.eval()
X_tf = tf(X)
self.assertTrue(torch.equal(X, X_tf))
X2 = tf(X_tf)
self.assertTrue(torch.equal(X2, X_tf))

# test no transform on eval
tf2 = OneHotToNumeric(
dim=dim, categorical_features=categorical_features, transform_on_eval=False
)
tf2.eval()
X_tf = tf2(X)
self.assertTrue(torch.equal(X, X_tf))

# test no transform on train
tf2 = OneHotToNumeric(
dim=dim, categorical_features=categorical_features, transform_on_train=False
)
X_tf = tf2(X)
self.assertTrue(torch.equal(X, X_tf))
tf2.eval()
X_tf = tf2(X)
self.assertFalse(torch.equal(X, X_tf))

# test equals
tf3 = OneHotToNumeric(
dim=dim, categorical_features=categorical_features, transform_on_train=False
)
self.assertTrue(tf3.equals(tf2))
# test different transform_on_train
tf3 = OneHotToNumeric(
dim=dim, categorical_features=categorical_features, transform_on_train=True
)
self.assertFalse(tf3.equals(tf2))
# test categorical features
tf3 = OneHotToNumeric(
dim=dim, categorical_features={}, transform_on_train=False
)
self.assertFalse(tf3.equals(tf2))


class TestAppendFeatures(BotorchTestCase):
def test_append_features(self):
Expand Down