Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Put input transforms into train mode before converting models #1283

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions botorch/models/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,8 @@ def model_list_to_batched(model_list: ModelListGP) -> BatchedMultiOutputGPyTorch

# construct the batched GP model
input_transform = getattr(models[0], "input_transform", None)
if input_transform is not None:
input_transform.train()
batch_gp = models[0].__class__(input_transform=input_transform, **kwargs)
adjusted_batch_keys, non_adjusted_batch_keys = _get_adjusted_batch_keys(
batch_state_dict=batch_gp.state_dict(), input_transform=input_transform
Expand Down Expand Up @@ -220,6 +222,8 @@ def batched_to_model_list(batch_model: BatchedMultiOutputGPyTorchModel) -> Model
"Conversion of MixedSingleTaskGP is currently not supported."
)
input_transform = getattr(batch_model, "input_transform", None)
if input_transform is not None:
input_transform.train()
outcome_transform = getattr(batch_model, "outcome_transform", None)
batch_sd = batch_model.state_dict()

Expand Down Expand Up @@ -324,6 +328,8 @@ def batched_multi_output_to_single_output(
"Conversion of models with custom likelihoods is currently unsupported."
)
input_transform = getattr(batch_mo_model, "input_transform", None)
if input_transform is not None:
input_transform.train()
batch_sd = batch_mo_model.state_dict()

# TODO: add support for outcome transforms.
Expand Down
39 changes: 34 additions & 5 deletions test/models/test_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
batched_to_model_list,
model_list_to_batched,
)
from botorch.models.transforms.input import Normalize
from botorch.models.transforms.input import AppendFeatures, Normalize
from botorch.models.transforms.outcome import Standardize
from botorch.utils.testing import BotorchTestCase
from gpytorch.likelihoods import GaussianLikelihood
Expand Down Expand Up @@ -80,6 +80,16 @@ def test_batched_to_model_list(self):
expected_octf.__getattr__(attr_name),
)
)
# test with AppendFeatures
input_tf = AppendFeatures(
feature_set=torch.rand(2, 1, device=self.device, dtype=dtype)
)
batch_gp = SingleTaskGP(
train_X, train_Y, outcome_transform=octf, input_transform=input_tf
).eval()
list_gp = batched_to_model_list(batch_gp)
self.assertIsInstance(list_gp, ModelListGP)
self.assertIsInstance(list_gp.models[0].input_transform, AppendFeatures)

def test_model_list_to_batched(self):
for dtype in (torch.float, torch.double):
Expand Down Expand Up @@ -167,6 +177,16 @@ def test_model_list_to_batched(self):
self.assertTrue(
torch.equal(batch_gp.input_transform.bounds, input_tf.bounds)
)
# test with AppendFeatures
input_tf3 = AppendFeatures(
feature_set=torch.rand(2, 1, device=self.device, dtype=dtype)
)
gp1_ = SingleTaskGP(train_X, train_Y1, input_transform=input_tf3)
gp2_ = SingleTaskGP(train_X, train_Y2, input_transform=input_tf3)
list_gp = ModelListGP(gp1_, gp2_).eval()
batch_gp = model_list_to_batched(list_gp)
self.assertIsInstance(batch_gp, SingleTaskGP)
self.assertIsInstance(batch_gp.input_transform, AppendFeatures)
# test different input transforms
input_tf2 = Normalize(
d=2,
Expand All @@ -177,7 +197,7 @@ def test_model_list_to_batched(self):
gp1_ = SingleTaskGP(train_X, train_Y1, input_transform=input_tf)
gp2_ = SingleTaskGP(train_X, train_Y2, input_transform=input_tf2)
list_gp = ModelListGP(gp1_, gp2_)
with self.assertRaises(UnsupportedError):
with self.assertRaisesRegex(UnsupportedError, "have the same"):
model_list_to_batched(list_gp)

# test batched input transform
Expand Down Expand Up @@ -292,17 +312,26 @@ def test_batched_multi_output_to_single_output(self):
self.assertTrue(
torch.equal(batch_so_model.input_transform.bounds, input_tf.bounds)
)
# test with AppendFeatures
input_tf = AppendFeatures(
feature_set=torch.rand(2, 1, device=self.device, dtype=dtype)
)
batched_mo_model = SingleTaskGP(
train_X, train_Y, input_transform=input_tf
).eval()
batch_so_model = batched_multi_output_to_single_output(batched_mo_model)
self.assertIsInstance(batch_so_model.input_transform, AppendFeatures)

# test batched input transform
input_tf2 = Normalize(
input_tf = Normalize(
d=2,
bounds=torch.tensor(
[[-1.0, -1.0], [1.0, 1.0]], device=self.device, dtype=dtype
),
batch_shape=torch.Size([2]),
)
batched_mo_model = SingleTaskGP(train_X, train_Y, input_transform=input_tf2)
batched_so_model = batched_multi_output_to_single_output(batched_mo_model)
batched_mo_model = SingleTaskGP(train_X, train_Y, input_transform=input_tf)
batch_so_model = batched_multi_output_to_single_output(batched_mo_model)
self.assertIsInstance(batch_so_model.input_transform, Normalize)
self.assertTrue(
torch.equal(batch_so_model.input_transform.bounds, input_tf.bounds)
Expand Down