Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update form of default value in docstring #802

Merged
merged 1 commit into from
Jul 20, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 22 additions & 22 deletions torchaudio/models/_wavernn.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ class _ResBlock(nn.Module):
The paper link is https://arxiv.org/pdf/1512.03385.pdf.

Args:
n_freq: the number of bins in a spectrogram (default=128)
n_freq: the number of bins in a spectrogram. (Default: ``128``)

Examples
>>> resblock = _ResBlock()
Expand Down Expand Up @@ -48,11 +48,11 @@ class _MelResNet(nn.Module):
r"""MelResNet layer uses a stack of ResBlocks on spectrogram.

Args:
n_res_block: the number of ResBlock in stack (default=10)
n_freq: the number of bins in a spectrogram (default=128)
n_hidden: the number of hidden dimensions of resblock (default=128)
n_output: the number of output dimensions of melresnet (default=128)
kernel_size: the number of kernel size in the first Conv1d layer (default=5)
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)

Examples
>>> melresnet = _MelResNet()
Expand Down Expand Up @@ -129,12 +129,12 @@ class _UpsampleNetwork(nn.Module):
r"""Upscale the dimensions of a spectrogram.

Args:
upsample_scales: the list of upsample scales
n_res_block: the number of ResBlock in stack (default=10)
n_freq: the number of bins in a spectrogram (default=128)
n_hidden: the number of hidden dimensions of resblock (default=128)
n_output: the number of output dimensions of melresnet (default=128)
kernel_size: the number of kernel size in the first Conv1d layer (default=5)
upsample_scales: the list of upsample scales.
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)

Examples
>>> upsamplenetwork = _UpsampleNetwork(upsample_scales=[4, 4, 16])
Expand Down Expand Up @@ -204,16 +204,16 @@ class _WaveRNN(nn.Module):
`upsample_scales` must equal `hop_length`.

Args:
upsample_scales: the list of upsample scales
n_classes: the number of output classes
hop_length: the number of samples between the starts of consecutive frames
n_res_block: the number of ResBlock in stack (default=10)
n_rnn: the dimension of RNN layer (default=512)
n_fc: the dimension of fully connected layer (default=512)
kernel_size: the number of kernel size in the first Conv1d layer (default=5)
n_freq: the number of bins in a spectrogram (default=128)
n_hidden: the number of hidden dimensions of resblock (default=128)
n_output: the number of output dimensions of melresnet (default=128)
upsample_scales: the list of upsample scales.
n_classes: the number of output classes.
hop_length: the number of samples between the starts of consecutive frames.
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_rnn: the dimension of RNN layer. (Default: ``512``)
n_fc: the dimension of fully connected layer. (Default: ``512``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)

Example
>>> wavernn = _waveRNN(upsample_scales=[5,5,8], n_classes=512, hop_length=200)
Expand Down