Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Auto-Round support #581

Merged
merged 77 commits into from
Sep 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
77 commits
Select commit Hold shift + click to select a range
be78a08
initial flow for autoround
yiliu30 Jul 24, 2024
49f8075
update flow
yiliu30 Jul 25, 2024
62834a2
use int4 kernel
yiliu30 Jul 26, 2024
6433e75
remove debug code
yiliu30 Jul 26, 2024
65f46e5
update the forward
yiliu30 Jul 29, 2024
1e22c11
clean code
yiliu30 Jul 29, 2024
b8d37b9
e2e example
yiliu30 Jul 30, 2024
8d388fb
refine code
yiliu30 Jul 30, 2024
07a95a0
add requirements for test
yiliu30 Jul 30, 2024
6baa62f
update test
yiliu30 Jul 30, 2024
78a5067
update the readme
yiliu30 Jul 30, 2024
37e9f5f
add readme
yiliu30 Jul 30, 2024
8bfe76a
update the filenames
yiliu30 Jul 30, 2024
e25d6eb
update the np version
yiliu30 Jul 30, 2024
16a901d
add demo
yiliu30 Jul 30, 2024
5f16e8d
format
yiliu30 Jul 30, 2024
f3442c5
add more docs
yiliu30 Jul 31, 2024
432da79
format
yiliu30 Jul 31, 2024
7ee9f9b
add doc
yiliu30 Jul 31, 2024
e5ffcca
use `AffineQuantizedTensor`
yiliu30 Jul 31, 2024
cec375b
impl ar using multensors
yiliu30 Aug 8, 2024
a8f5681
clean code
yiliu30 Aug 8, 2024
ab08cb3
use hook + multensors
yiliu30 Aug 12, 2024
5ee2e06
separate mul_tensors into a new file
yiliu30 Aug 12, 2024
a5a3544
fix typos
yiliu30 Aug 12, 2024
e406ee8
rename mul_tensor to multi_tensor
yiliu30 Aug 13, 2024
7b6908e
enable amp
yiliu30 Aug 13, 2024
6a4d67c
eval model
yiliu30 Aug 13, 2024
c1fa230
add gen examples
yiliu30 Aug 13, 2024
5eef0a6
merge with main
yiliu30 Aug 13, 2024
e4cfa7d
add warmup to benchmark
yiliu30 Aug 13, 2024
41d9afd
add benchmark
yiliu30 Aug 13, 2024
e1cec58
Merge branch 'main' into re-a3
yiliu30 Aug 13, 2024
6f20e25
Merge branch 'auto_round_support-3' of https://github.com/yiliu30/tor…
yiliu30 Aug 13, 2024
ee1510c
Merge branch 'auto_round_support-3' into auto_round_support-3-bench
yiliu30 Aug 13, 2024
ca5bb30
clean code
yiliu30 Aug 13, 2024
e01e028
format code
yiliu30 Aug 13, 2024
8532af0
Merge pull request #3 from yiliu30/auto_round_support-3-bench
yiliu30 Aug 13, 2024
5106fe0
use tiny kernel
yiliu30 Aug 16, 2024
b82b638
add more note
yiliu30 Aug 16, 2024
bb08957
format
yiliu30 Aug 16, 2024
b5f08c5
Merge pull request #4 from yiliu30/auto_round_support-3-tinygemm-kernel
yiliu30 Aug 16, 2024
c8fc3f6
correct typos
yiliu30 Aug 16, 2024
7ee493f
remove hard code
yiliu30 Aug 19, 2024
1f75897
use intx
yiliu30 Aug 19, 2024
48d0903
Merge pull request #6 from yiliu30/auto_round_support-3-intx
yiliu30 Aug 19, 2024
34e6b49
enable offload for multitensor
yiliu30 Aug 20, 2024
eeca10b
update the default config
yiliu30 Aug 20, 2024
2b94608
refine note
yiliu30 Aug 21, 2024
0d38b20
Merge pull request #8 from yiliu30/enable-llama3
yiliu30 Aug 21, 2024
f04b594
Merge branch 'main' into auto_round_support-3
yiliu30 Aug 21, 2024
0e0b06d
update the version check
yiliu30 Aug 21, 2024
d0a4920
format
yiliu30 Aug 22, 2024
1e8a081
update
yiliu30 Aug 22, 2024
5b3374f
add ut
yiliu30 Aug 22, 2024
4ef0cdc
format
yiliu30 Aug 22, 2024
5f78c73
add scripts
yiliu30 Aug 22, 2024
5baae13
format code
yiliu30 Aug 22, 2024
6feb975
format
yiliu30 Aug 22, 2024
f6ed1e0
Merge pull request #9 from yiliu30/auto_round_support-3-unified-api
yiliu30 Aug 22, 2024
03cd9fc
update
yiliu30 Aug 22, 2024
e60b815
fix typo
yiliu30 Aug 22, 2024
b20e6d9
refine bench code
yiliu30 Aug 22, 2024
fabe8d2
Merge branch 'main' into auto_round_support-3
yiliu30 Aug 25, 2024
9ae5392
Enable `use_optimized_layer_output` and AO' llama (#12)
yiliu30 Aug 26, 2024
157c189
Refine the Doc (#14)
yiliu30 Aug 26, 2024
2df3f5f
add more docstring
yiliu30 Aug 26, 2024
d719460
add paper link
yiliu30 Aug 26, 2024
d7ba39e
correct some note
yiliu30 Aug 26, 2024
a2c6b28
add cmd
yiliu30 Aug 27, 2024
896d87f
resolve conflicts
yiliu30 Aug 28, 2024
6a8e073
udpdate the scripts
yiliu30 Aug 28, 2024
9e48d1a
revert some change
yiliu30 Aug 28, 2024
5ca125e
Add a lightweight configuration for quick benchmarking (#15)
yiliu30 Aug 29, 2024
b6d95ce
merge with main
yiliu30 Aug 30, 2024
21686f1
update quant method name
yiliu30 Aug 30, 2024
96f745d
Wrap model's buffers and params to `MultiTensor` & update the results…
yiliu30 Sep 3, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions test/prototype/test_autoround.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
import pytest
from torchao.prototype.autoround.utils import is_auto_round_available

if not is_auto_round_available():
pytest.skip("AutoRound is not available", allow_module_level=True)

import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
from torchao import quantize_

from torchao.dtypes import AffineQuantizedTensor
from torchao.prototype.autoround.core import (
apply_auto_round,
prepare_model_for_applying_auto_round_,
)
from torchao.prototype.autoround.multi_tensor import MultiTensor
from torchao.utils import TORCH_VERSION_AT_LEAST_2_5

_AVAILABLE_DEVICES = ["cpu"] + (["cuda"] if torch.cuda.is_available() else [])


# Copied from https://github.com/pytorch/ao/pull/721
yiliu30 marked this conversation as resolved.
Show resolved Hide resolved
class TwoLinear(torch.nn.Module):
def __init__(self, in_features=64, out_features=128):
super().__init__()
self.linear1 = torch.nn.Linear(in_features, out_features)
self.linear2 = torch.nn.Linear(in_features, out_features)

def forward(self, x, y):
x = self.linear1(x)
y = self.linear2(y)
return x + y


class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.two_linear1 = TwoLinear()
self.two_linear2 = TwoLinear(128, 256)

def forward(self, x, y):
x1 = self.two_linear1(x, y)
x2 = self.two_linear2(x1, x1)
return x2


def _is_two_linear(mod, fqn):
return isinstance(mod, TwoLinear)


class ModelWithInplaceOp(torch.nn.Module):
def __init__(self, DIM=128):
super().__init__()
self.lin = torch.nn.Linear(DIM, DIM)
self.register_buffer("other", torch.zeros(DIM, DIM))

def forward(self, x, idx):
x = x + self.lin(x)
# update buffer
self.other[idx] = x
return x


class M2(torch.nn.Module):
def __init__(self, DIM=128):
super().__init__()
self.m1 = ModelWithInplaceOp(DIM)
self.m2 = ModelWithInplaceOp(DIM)

def forward(self, x, idx):
x = self.m1(x, idx)
x = self.m2(x, idx)
return x


def _check_params_and_buffers_type(module, check_fun):
return [check_fun(p) for p in module.parameters()] + [
check_fun(b) for b in module.buffers()
]


class TestAutoRound(TestCase):

@pytest.mark.skip(not TORCH_VERSION_AT_LEAST_2_5, "Requires torch 2.5 or later")
@parametrize("device", _AVAILABLE_DEVICES)
@torch.no_grad()
def test_auto_round(self, device: str):
example_inputs = (
torch.randn(32, 64).to(device),
torch.randn(32, 64).to(device),
)
m = M().eval().to(device)
before_quant = m(*example_inputs)
prepare_model_for_applying_auto_round_(
m,
is_target_module=_is_two_linear,
bits=7,
group_size=32,
iters=20,
device=device,
)
assert all(
_check_params_and_buffers_type(m, lambda x: isinstance(x, MultiTensor))
), "Expected all parameters and buffers to be `MultiTensor`."
input1 = []
input2 = []
for _ in range(10):
input1.append(torch.randn(32, 64).to(device))
input2.append(torch.randn(32, 64).to(device))

mt_input1 = MultiTensor(input1)
mt_input2 = MultiTensor(input2)
out = m(mt_input1, mt_input2)
assert isinstance(out, MultiTensor), f"Expected MultiTensor, got {type(out)}"
assert all(
_check_params_and_buffers_type(m, lambda x: not isinstance(x, MultiTensor))
), "Expected all parameters and buffers have been converted back to tensor."
quantize_(m, apply_auto_round(), _is_two_linear, device=device)
for l in m.modules():
if isinstance(l, torch.nn.Linear):
assert isinstance(l.weight, AffineQuantizedTensor)
after_quant = m(*example_inputs)
assert after_quant is not None, "Quantized model forward pass failed"

@pytest.mark.skip(not TORCH_VERSION_AT_LEAST_2_5, "Requires torch 2.5 or later")
@parametrize("device", _AVAILABLE_DEVICES)
@torch.no_grad()
def test_wrap_model_with_multi_tensor(self, device: str):

_is_model_with_inplace_op = lambda mod, fqn: isinstance(mod, ModelWithInplaceOp)

DIM = 128
m = M2(DIM).eval().to(device)
prepare_model_for_applying_auto_round_(
m,
is_target_module=_is_model_with_inplace_op,
bits=7,
group_size=32,
iters=20,
device=device,
)
assert all(
_check_params_and_buffers_type(m, lambda x: isinstance(x, MultiTensor))
), "Expected all parameters and buffers to be `MultiTensor`."
input1 = []
input2 = []
for _ in range(2):
input1.append(torch.randn(DIM, DIM).to(device))
input2.append(torch.randint(0, DIM, (DIM,), dtype=torch.long).to(device))

mt_input1 = MultiTensor(input1)
mt_input2 = MultiTensor(input2)
out = m(mt_input1, mt_input2)
assert isinstance(out, MultiTensor), f"Expected MultiTensor, got {type(out)}"
assert all(
_check_params_and_buffers_type(m, lambda x: not isinstance(x, MultiTensor))
), "Expected all parameters and buffers have been converted back to tensor."
quantize_(m, apply_auto_round(), _is_model_with_inplace_op, device=device)
for l in m.modules():
if isinstance(l, torch.nn.Linear):
assert isinstance(l.weight, AffineQuantizedTensor)
after_quant = m(input1[0], input2[0])
assert after_quant is not None, "Quantized model forward pass failed"


instantiate_parametrized_tests(TestAutoRound)

if __name__ == "__main__":
run_tests()
12 changes: 12 additions & 0 deletions torchao/_models/llama/benchmarks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,12 @@ python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --co
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --quantization int4wo-64 --write_result benchmark_results.txt
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --compile_prefill --quantization autoquant --write_result benchmark_results.txt

# auto-round w/ quant_lm_head
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --quantization autoround
# auto-round w/o quant_lm_head
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --quantization autoround-cuda-0


export MODEL_REPO=meta-llama/Meta-Llama-3-8B
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --precision torch.float32 --write_result benchmark_results.txt
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --write_result benchmark_results.txt
Expand All @@ -23,6 +29,12 @@ python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --co
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --quantization int4wo-64 --write_result benchmark_results.txt
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --compile_prefill --quantization autoquant --write_result benchmark_results.txt

# auto-round w/ quant_lm_head
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --quantization autoround
# auto-round w/o quant_lm_head
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --compile --quantization autoround-cuda-0


export MODEL_REPO=meta-llama/Meta-Llama-3.1-8B
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --write_result benchmark_results.txt --cache_size 8192
python generate.py --checkpoint_path $CHECKPOINT_PATH/$MODEL_REPO/model.pth --write_result benchmark_results.txt --cache_size 8192 --kv_cache_quantization
Expand Down
51 changes: 49 additions & 2 deletions torchao/_models/llama/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def device_sync(device):
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from torchao._models.llama.model import Transformer, prepare_inputs_for_model
from torchao._models.llama.model import Transformer, prepare_inputs_for_model, TransformerBlock
from torchao._models.llama.tokenizer import get_tokenizer

def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
Expand Down Expand Up @@ -219,6 +219,53 @@ def main(
groupsize=int(quantization.split("-")[-1])
assert groupsize in [32,64,128,256], f"int4wo groupsize needs to be one of [32,64,128,256] but got {groupsize}"
quantize_(model, int4_weight_only(group_size=groupsize))

if "autoround" in quantization:
from torchao.prototype.autoround.autoround_llm import quantize_model_with_autoround_
from transformers import AutoTokenizer

_tokenizer = AutoTokenizer.from_pretrained(checkpoint_path.parent)
# parse args from quantization string:
# autoround-<model_device>-<quant_lm_head>-<iters>-<groupsize>-<batch_size>-<seqlen>-<nsamples>
# A lightweight configuration for generation benchmarking.
_quant_args = quantization.split("-")
_default_quant_args = [True, 1, 128, 1, 512, 32]
_model_devie = _quant_args[1] if len(_quant_args) > 1 else device
_quant_args = _quant_args[2:]
quant_lm_head, iters, groupsize, batch_size, seqlen, nsamples = [
int(x) for x in _quant_args
] + _default_quant_args[len(_quant_args) :]
model = model.to(_model_devie)
print(
(
f"Quantizing model with autoround(iters={iters}, groupsize={groupsize}, "
f"quant_lm_head={quant_lm_head}, batch_size={batch_size}, seqlen={seqlen}, nsamples={nsamples})"
)
)
with torch.device(_model_devie):
model.setup_caches(
max_batch_size=batch_size, max_seq_length=seqlen, training=True
)

if quant_lm_head:
is_target_module = (
lambda mod, fqn: isinstance(mod, TransformerBlock) or "output" in fqn
)
else:
is_target_module = lambda mod, fqn: isinstance(mod, TransformerBlock)
quantize_model_with_autoround_(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: should we just use the same flow everywhere to reduce confusions, the flow in https://github.com/pytorch/ao/pull/581/files#diff-af129d63635a3b5b0a95f1a3831f852fbd7bedfd66b38d41bf4975fb49aad246 would be the recommended one I think

model=model,
tokenizer=_tokenizer,
is_target_module=is_target_module,
bits=4,
seqlen=seqlen,
bs=batch_size,
iters=iters,
nsamples=nsamples,
)
model.to(device)
model.reset_caches()

if "fp6" in quantization:
quantize_(model, fpx_weight_only(3, 2))
if "autoquant" == quantization:
Expand Down Expand Up @@ -387,7 +434,7 @@ def callback(x):
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.')
parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("../../../checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
parser.add_argument('-q', '--quantization', type=str, help='Which quantization techniques to apply: int8dq, int8wo, int4wo-<groupsize>, autoquant')
parser.add_argument('-q', '--quantization', type=str, help='Which quantization techniques to apply: int8dq, int8wo, int4wo-<groupsize>, autoquant, autoround-<model_device>-<quant_lm_head>-<iters>-<groupsize>-<batch_size>-<seqlen>-<nsamples>')
parser.add_argument('--kv_cache_quantization', action='store_true', help='Whether to quantize the KV cache')
parser.add_argument('--cache_size', type=int, default=None, help='Force size of cache to be a certain number of tokens, if not set, will use max_new_tokens+prompt_size')
parser.add_argument('--linear_causal_mask', action='store_true', help='Whether to use the memory efficient, but slightly less fast, linear causal mask (important for long context lengths)')
Expand Down
9 changes: 9 additions & 0 deletions torchao/_models/llama/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,7 +190,16 @@ def setup_caches(self, max_batch_size, max_seq_length, training: bool=False, kv_
dtype,
use_scaled=self.config.use_scaled_rope
)

def reset_caches(self):
jerryzh168 marked this conversation as resolved.
Show resolved Hide resolved
"""Reset caches.

The caches used by training stage and inference stage may be different, reset them before switching.
"""
self.max_batch_size = -1
self.max_seq_length = -1
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None

def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
Expand Down
104 changes: 104 additions & 0 deletions torchao/prototype/autoround/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Auto-Round
yiliu30 marked this conversation as resolved.
Show resolved Hide resolved

Auto-Round is an advanced quantization algorithm designed for low-bit LLM inference. It leverages [sign gradient descent](https://arxiv.org/abs/1905.12938) to fine-tune rounding values and minmax values of weights. This approach competes impressively with recent methods without introducing any additional inference overhead while using low tuning costs. This module provides the end-to-end examples to quantize floating-point models to low-bit and integration with torchao's `quantize_` API and low-bit kernels.

## Usage

### Quick Start

```python
python autoround_llm.py -m /model/name/or/path
```


> [!NOTE]
> Before running, ensure you have installed the `auto-round` with `pip install -r requirements.txt`.


### Detailed Usage

`Auto-Round` is a calibration-based quantization algorithm. The flow involves three main steps: 1) insert hooks to the modules you want to quantize, 2) Wrap the calibration data with `MultiTensor` and run the model, 3) Replace the optimized weight with `AffineQuantizedTensor` to select the appropriate low-bit kernel.

> [!NOTE]
> To learn more about the flow and `MultiTensor`, please refer to [this example](https://github.com/pytorch/ao/blob/main/tutorials/calibration_flow/gptq_like.py).

#### Step 1: Prepare the Model
```python
model = ... # Load your model
model_device = next(model.parameters()).device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Define a function to identify target modules for quantization.
# For example, to apply Auto-Round to all decoder layers and the `lm-head` in a Llama model:
decoder_cls = transformers.models.llama.modeling_llama.LlamaDecoderLayer
is_target_module = lambda mod, fqn: isinstance(mod, decoder_cls) or "lm_head" in fqn
# Prepare the model for Auto-Round
from torchao.prototype.autoround.core import prepare_model_for_applying_auto_round_

prepare_model_for_applying_auto_round_(
model,
is_target_module=is_target_module,
bits=4,
group_size=128,
iters=200,
device=device,
)
```
> [!NOTE]
> To avoid OOM issues, load the model on CPU, and set `device` to `'cuda'`.

#### Step 2: Apply Optimization
Wrap all inputs as a `MultiTensor` to track all calibration data for optimized modules:

```python
input_ids_lst = []
for data in dataloader:
input_ids_lst.append(data["input_ids"].to(model_device))

multi_t_input_ids = MultiTensor(input_ids_lst)
# The optimization is applied during the forward pass
out = model(multi_t_input_ids)
```
#### Step 3: Finalize Quantization
After obtaining optimized `zero_point` and `scale` values, create the `AffineQuantizedTensor`
for each target weight to select the right low-bits kernel.

```python
from torchao.prototype.autoround.core import apply_auto_round

quantize_(model, apply_auto_round(), is_target_module)
```

## End-to-End Results
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

so what about performance results?

### [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
| | Avg. | Mmlu | Piqa | Winogrande | Hellaswag | Lambada_openai |
| -------------- | ------- | ------ | ------ | ---------- | --------- | -------------- |
| bf16 | 0.7080 | 0.6783 | 0.8003 | 0.7403 | 0.5910 | 0.7303 |
| auto-round-4bit | 0.6988 | 0.6533 | 0.7949 | 0.7372 | 0.5837 | 0.7250 |
| torchao-int4wo | 0.6883 | 0.6363 | 0.7938 | 0.7348 | 0.5784 | 0.6980 |

### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
| | Avg. | Mmlu | Piqa | Winogrande | Hellaswag | Lambada_openai |
| -------------- | ------- | ------ | ------ | ---------- | --------- | -------------- |
| bf16 | 0.6881 | 0.6389 | 0.7840 | 0.7222 | 0.5772 | 0.7184 |
| auto-round-4bit | 0.6818 | 0.6232 | 0.7862 | 0.7230 | 0.5661 | 0.7105 |
| torchao-int4wo | 0.6728 | 0.5939 | 0.7737 | 0.7222 | 0.5612 | 0.7132 |


### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
| | Avg. | Mmlu | Piqa | Winogrande | Hellaswag | Lambada_openai |
| -------------- | ------- | ------ | ------ | ---------- | --------- | -------------- |
| bf16 | 0.6347 | 0.4647 | 0.7644 | 0.6606 | 0.577 | 0.7070 |
| auto-round-4bit | 0.6327 | 0.4534 | 0.7590 | 0.6661 | 0.5706 | 0.7143 |
| torchao-int4wo | 0.6252 | 0.4427 | 0.7617 | 0.6654 | 0.5674 | 0.6889 |

> [!NOTE]
> - `auto-round-4bit` represents the following configuration: `bits=4`, `iters=200`, `seqlen=2048`, `train_bs=8`, `group_size=128`, and `quant_lm_head=False`. <br>
> - `torchao-int4wo` represents `int4_weight_only(group_size=128)` and `quant_lm_head=False`.
> - If the model includes operations without a deterministic implementation (such as Flash Attention), the results may differ slightly.


## Credits
yiliu30 marked this conversation as resolved.
Show resolved Hide resolved

- Paper: https://arxiv.org/abs/2309.05516
- Authors: [Intel® Neural Compressor Team](https://github.com/intel/neural-compressor)
Loading
Loading