Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove input_quant_func from AffineQuantizedTensor subclass #243

Merged
merged 4 commits into from
May 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 73 additions & 13 deletions test/quantization/test_quant_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -395,7 +395,10 @@ def test_eval_wrapper(self):
# TODO: move to a separate test file
@unittest.skipIf(not TORCH_VERSION_AFTER_2_4, "Test only enabled for 2.4+")
def test_quantized_tensor_subclass_8da4w(self):
from torchao.quantization.subclass import AffineQuantizedTensor
from torchao.quantization.subclass import (
AffineQuantizedTensor,
LinearActQuantizedTensor,
)
from torchao.quantization.quant_primitives import MappingType
import copy

Expand All @@ -409,6 +412,7 @@ def test_quantized_tensor_subclass_8da4w(self):
quant_max = 7

# TODO: make a general helper function?
# input settings
def get_per_token_block_size(x):
block_size = []
for i in range(len(x.shape)-1):
Expand All @@ -421,13 +425,18 @@ def get_per_token_block_size(x):
input_target_dtype = torch.int8
input_quant_func = lambda x: AffineQuantizedTensor.from_float(x, input_mapping_type, get_per_token_block_size(x), input_target_dtype)

def dynamic_quant(linear):
# note: order is important
linear.weight = torch.nn.Parameter(AffineQuantizedTensor.from_float(linear.weight, mapping_type, block_size, target_dtype, quant_min, quant_max, eps), requires_grad=False)
linear.weight = torch.nn.Parameter(LinearActQuantizedTensor.from_float(linear.weight, input_quant_func), requires_grad=False)

m = ToyLinearModel().eval()
m_copy = copy.deepcopy(m)
example_inputs = m.example_inputs()
m.linear1.weight = torch.nn.Parameter(AffineQuantizedTensor.from_float(m.linear1.weight, mapping_type, block_size, target_dtype, quant_min, quant_max, eps, input_quant_func=input_quant_func), requires_grad=False)
m.linear2.weight = torch.nn.Parameter(AffineQuantizedTensor.from_float(m.linear2.weight, mapping_type, block_size, target_dtype, quant_min, quant_max, eps, input_quant_func=input_quant_func), requires_grad=False)
assert isinstance(m.linear1.weight, AffineQuantizedTensor)
assert isinstance(m.linear2.weight, AffineQuantizedTensor)
dynamic_quant(m.linear1)
dynamic_quant(m.linear2)
assert isinstance(m.linear1.weight, LinearActQuantizedTensor)
assert isinstance(m.linear2.weight, LinearActQuantizedTensor)

# reference
from torchao.quantization.quant_api import Int8DynActInt4WeightQuantizer
Expand Down Expand Up @@ -461,9 +470,6 @@ def test_quantized_tensor_subclass_int4(self):
preserve_zero = False
zero_point_dtype = torch.bfloat16

# weight only quantization
input_quant_func = None

# use 1024 so that we don't need padding
m = ToyLinearModel(1024, 1024, 1024).eval().to(torch.bfloat16).to("cuda")
m_copy = copy.deepcopy(m)
Expand All @@ -475,7 +481,6 @@ def to_quantized(weight):
zero_point_dtype=zero_point_dtype,
preserve_zero=preserve_zero,
zero_point_domain=ZeroPointDomain.FLOAT,
input_quant_func=input_quant_func,
)

m.linear1.weight = torch.nn.Parameter(to_quantized(m.linear1.weight), requires_grad=False)
Expand Down Expand Up @@ -506,16 +511,13 @@ def test_quantized_tensor_subclass_int8(self):
eps = torch.finfo(torch.float32).eps
zero_point_dtype = torch.int64

# weight only quantization
input_quant_func = None

m = ToyLinearModel().eval().to(torch.bfloat16)
m_copy = copy.deepcopy(m)
example_inputs = tuple(map(lambda x: x.to(torch.bfloat16), m.example_inputs()))

def to_quantized(weight):
block_size = (1, weight.shape[1])
return AffineQuantizedTensor.from_float(weight, mapping_type, block_size, target_dtype, eps=eps, zero_point_dtype=zero_point_dtype, input_quant_func=input_quant_func)
return AffineQuantizedTensor.from_float(weight, mapping_type, block_size, target_dtype, eps=eps, zero_point_dtype=zero_point_dtype)

m.linear1.weight = torch.nn.Parameter(to_quantized(m.linear1.weight), requires_grad=False)
m.linear2.weight = torch.nn.Parameter(to_quantized(m.linear2.weight), requires_grad=False)
Expand All @@ -532,5 +534,63 @@ def to_quantized(weight):
torch.testing.assert_close(res, ref, rtol=0.00001, atol=1e-2)


@unittest.skipIf(not TORCH_VERSION_AFTER_2_4, "Test only enabled for 2.4+")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
def test_quantized_tensor_subclass_int8_dyn_quant(self):
from torchao.quantization.subclass import AffineQuantizedTensor
from torchao.quantization.subclass import LinearActQuantizedTensor
from torchao.quantization.quant_primitives import MappingType
from torchao.quantization.quant_primitives import ZeroPointDomain
import copy

# weight settings
mapping_type = MappingType.SYMMETRIC
def get_weight_block_size(x):
return (1, x.shape[1])
target_dtype = torch.int8
eps = torch.finfo(torch.float32).eps
zero_point_dtype = torch.int64

# input settings
def get_per_token_block_size(x):
block_size = list(x.shape)
for i in range(len(block_size)-1):
block_size[i] = 1
return block_size

input_mapping_type = MappingType.SYMMETRIC
input_target_dtype = torch.int8
input_eps = 1e-5
input_quant_min = -127
input_quant_max = 127
input_quant_func = lambda x: AffineQuantizedTensor.from_float(x, input_mapping_type, get_per_token_block_size(x), input_target_dtype, eps=input_eps, quant_min=input_quant_min, quant_max=input_quant_max, scale_dtype=torch.float)

# use 1024 so that we don't need padding
m = ToyLinearModel(1024, 1024, 1024).eval().to(torch.bfloat16).to("cuda")
m_copy = copy.deepcopy(m)
example_inputs = tuple(map(lambda x: x.to(torch.bfloat16).to("cuda"), m.example_inputs()))

def dynamic_quant(linear):
# note: order is important
linear.weight = torch.nn.Parameter(AffineQuantizedTensor.from_float(linear.weight, mapping_type, get_weight_block_size(linear.weight), target_dtype, eps=eps, zero_point_dtype=zero_point_dtype), requires_grad=False)
linear.weight = torch.nn.Parameter(LinearActQuantizedTensor.from_float(linear.weight, input_quant_func), requires_grad=False)

dynamic_quant(m.linear1)
dynamic_quant(m.linear2)
assert isinstance(m.linear1.weight, LinearActQuantizedTensor)
assert isinstance(m.linear2.weight, LinearActQuantizedTensor)
assert isinstance(m.linear1.weight.original_weight_tensor, AffineQuantizedTensor)
assert isinstance(m.linear2.weight.original_weight_tensor, AffineQuantizedTensor)

# reference
from torchao.quantization.quant_api import change_linear_weights_to_int8_dqtensors
change_linear_weights_to_int8_dqtensors(m_copy)

res = m(*example_inputs)
ref = m_copy(*example_inputs)

self.assertTrue(torch.equal(res, ref))


if __name__ == "__main__":
unittest.main()
Loading
Loading