Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update on "Add generic fake quantized linear for QAT"
**Summary:** This commit adds a generic fake quantized linear module to replace the uses of the existing more specific QAT linears. For example, `Int8DynActInt4WeightQATLinear` can be expressed as follows: ``` from torchao.quantization.prototype.qat.api import FakeQuantizeConfig from torchao.quantization.prototype.qat.linear import FakeQuantizedLinear activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = FakeQuantizeConfig(torch.int4, group_size=8) fq_linear = FakeQuantizedLinear(16, 32, False, activation_config, weight_config) ``` The main motivation is to provide a more flexible way to perform QAT on models with linear layers. Previously, we would have to create a new linear class every time we wish to experiment with different fake quantization settings, e.g. different group size or different bit width. Now we can express this easily using a single linear module. **Test Plan:** python test/quantization/test_qat.py -k test_fake_quantize_config_granularity python test/quantization/test_qat.py -k test_fake_quantize_config_granularity_error_cases python test/quantization/test_qat.py -k test_fake_quantize_config_mapping_type python test/quantization/test_qat.py -k test_fake_quantized_linear_8da4w python test/quantization/test_qat.py -k test_fake_quantized_linear_4w [ghstack-poisoned]
- Loading branch information