-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* eval script for llama Summary: previously we were only doing this in the tests but now we have an eval script to along with generate.py Test Plan: python eval.py -q "int4wo-64-gptq" Reviewers: Subscribers: Tasks: Tags: * new api Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags:
- Loading branch information
Showing
2 changed files
with
137 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
|
||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
import torch | ||
import torchao | ||
from pathlib import Path | ||
from typing import List, Optional | ||
from generate import ( | ||
_load_model, | ||
device_sync, | ||
|
||
) | ||
from torchao.quantization.quant_api import ( | ||
quantize, int4wo, int8wo, int8da_int8w | ||
|
||
) | ||
from torchao._models._eval import TransformerEvalWrapper, InputRecorder | ||
|
||
from tokenizer import get_tokenizer | ||
import time | ||
from torchao.quantization.GPTQ import Int4WeightOnlyGPTQQuantizer | ||
from model import prepare_inputs_for_model | ||
|
||
torch._inductor.config.fx_graph_cache = True | ||
torch._inductor.config.force_fuse_int_mm_with_mul = True | ||
|
||
def run_evaluation( | ||
checkpoint_path: Path, | ||
tasks: List[str], | ||
limit: Optional[int] = None, | ||
device = "cuda", | ||
precision = torch.bfloat16, | ||
quantization: Optional[str] = None, | ||
compile=False, | ||
max_length=None, | ||
calibration_tasks: Optional[List[str]] = None, | ||
calibration_limit: Optional[int] = None, | ||
calibration_seq_length: Optional[int] = None, | ||
pad_calibration_inputs: Optional[bool] = False, | ||
): | ||
"""Runs the evaluation of a model using LM Eval.""" | ||
assert checkpoint_path.is_file(), checkpoint_path | ||
tokenizer_path = checkpoint_path.parent / "tokenizer.model" | ||
assert tokenizer_path.is_file(), str(tokenizer_path) | ||
# Load Model and Tokenizer | ||
|
||
print("Loading model ...") | ||
t0 = time.time() | ||
model = _load_model(checkpoint_path, "cpu", precision) | ||
|
||
if max_length is None: | ||
max_length = model.config.block_size | ||
|
||
device_sync(device=device) # MKG | ||
print(f"Time to load model: {time.time() - t0:.02f} seconds") | ||
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path) | ||
|
||
|
||
if quantization: | ||
if "int8wo" in quantization: | ||
quantize(model, int8wo()) | ||
if "int8dq" in quantization: | ||
quantize(model, int8da_int8w()) | ||
if "int4wo" in quantization and not "gptq" in quantization: | ||
groupsize=int(quantization.split("-")[-1]) | ||
assert groupsize in [32,64,128,256], f"int4wo groupsize needs to be one of [32,64,128,256] but got {groupsize}" | ||
quantize(model, int4wo(groupsize=groupsize)) | ||
if "int4wo" in quantization and "gptq" in quantization: | ||
groupsize=int(quantization.split("-")[-2]) | ||
assert groupsize in [32,64,128,256], f"int4wo groupsize needs to be one of [32,64,128,256] but got {groupsize}" | ||
|
||
inputs = InputRecorder( | ||
tokenizer, | ||
calibration_seq_length, | ||
prepare_inputs_for_model, | ||
pad_calibration_inputs, | ||
model.config.vocab_size, | ||
device="cpu" | ||
).record_inputs( | ||
calibration_tasks, | ||
calibration_limit, | ||
).get_inputs() | ||
|
||
quantizer = Int4WeightOnlyGPTQQuantizer(groupsize=groupsize, precision=precision) | ||
model.setup_caches(max_batch_size=1, max_seq_length=calibration_seq_length) | ||
model = quantizer.quantize(model, inputs).to(device) | ||
|
||
if compile: | ||
model = torch.compile(model, mode="max-autotune", fullgraph=True) | ||
with torch.no_grad(): | ||
TransformerEvalWrapper( | ||
model=model.to(device), | ||
tokenizer=tokenizer, | ||
max_seq_length=max_length, | ||
input_prep_func=prepare_inputs_for_model, | ||
device=device, | ||
).run_eval( | ||
tasks=tasks, | ||
limit=limit, | ||
) | ||
|
||
if __name__ == '__main__': | ||
import argparse | ||
parser = argparse.ArgumentParser(description='Run HF Model Evaluation') | ||
parser.add_argument('--checkpoint_path', type=Path, default=Path("../../../checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Model checkpoint path.') | ||
parser.add_argument('--tasks', nargs='+', type=str, default=["wikitext"], help='List of lm-eluther tasks to evaluate usage: --tasks task1 task2') | ||
parser.add_argument('--limit', type=int, default=None, help='Number of eval samples to evaluate') | ||
parser.add_argument('--precision', type=lambda x: getattr(torch, x.split(".")[-1]), default=torch.bfloat16, help='dtype precision to use') | ||
parser.add_argument('--device', type=str, default="cuda", help='Device to use for evaluation') | ||
parser.add_argument("-q", "--quantization", type=str, help="Which quantization techniques to apply: int8dq, int8wo, int4wo-<groupsize>, int4wo-<groupsize>-gptq") | ||
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.') | ||
parser.add_argument('--max_length', type=int, default=None, help='Length of text to process at one time') | ||
parser.add_argument('--calibration_tasks', type=str, nargs='+', default=['wikitext'], help='tasks to do gptq calibration on, if doing gptq') | ||
parser.add_argument('--calibration_limit', type=int, default=1000, help='number of samples to use for gptq calibration') | ||
parser.add_argument('--calibration_seq_length', type=int, default=100, help='length of sequences to use for gptq calibration') | ||
parser.add_argument('--pad_calibration_inputs', type=bool, default=False, help='pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower') | ||
|
||
args = parser.parse_args() | ||
run_evaluation( | ||
args.checkpoint_path, | ||
args.tasks, | ||
args.limit, | ||
args.device, | ||
args.precision, | ||
args.quantization, | ||
args.compile, | ||
args.max_length, | ||
args.calibration_tasks, | ||
args.calibration_limit, | ||
args.calibration_seq_length, | ||
args.pad_calibration_inputs, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters