Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: support aten.log1p converter #2823

Merged
merged 2 commits into from
May 22, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 51 additions & 34 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -1165,6 +1165,57 @@ def aten_ops_log(
)


@dynamo_tensorrt_converter(torch.ops.aten.log2.default)
def log2(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I just noticed the naming was inconsistent. Can you modify the function name to aten_ops_log2?

ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.log2(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.log10.default)
def log10(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same as above. log10 -> aten_ops_log10

ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.log10(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.log1p.default)
def aten_ops_log1p(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.log1p(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.sqrt.default)
def aten_ops_sqrt(
ctx: ConversionContext,
Expand Down Expand Up @@ -2829,23 +2880,6 @@ def aten_ops_flip(
)


@dynamo_tensorrt_converter(torch.ops.aten.log2.default)
def log2(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.log2(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.scalar_tensor.default)
def aten_ops_scalar_tensor(
ctx: ConversionContext,
Expand All @@ -2859,23 +2893,6 @@ def aten_ops_scalar_tensor(
)


@dynamo_tensorrt_converter(torch.ops.aten.log10.default)
def log10(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.log10(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.roll.default)
@enforce_tensor_types(
{
Expand Down
17 changes: 17 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,23 @@ def log2(
)


def log1p(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input_val: TRTTensor,
) -> TRTTensor:
"""
Computes log(1 + x) for each element of the input tensor.
"""
one_plus_x = impl.elementwise.add(
ctx, target, source_ir, f"{name}_add", input_val, 1
)

return log(ctx, target, source_ir, f"{name}_log", one_plus_x)


def sqrt(
ctx: ConversionContext,
target: Target,
Expand Down
73 changes: 73 additions & 0 deletions tests/py/dynamo/conversion/test_log1p.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt import Input

from .harness import DispatchTestCase


class TestLog1pConverter(DispatchTestCase):
@parameterized.expand(
[
((10,), torch.float),
((1, 20), torch.float),
((2, 3, 4), torch.float),
((2, 3, 4, 5), torch.float),
]
)
def test_log1p_float(self, input_shape, dtype):
class Log1p(nn.Module):
def forward(self, input):
return torch.ops.aten.log1p.default(input)

inputs = [
torch.randn(input_shape, dtype=dtype).abs() + 0.001
] # ensure positive input
self.run_test(
Log1p(),
inputs,
)

@parameterized.expand(
[
((10,), torch.int, 0, 5),
((1, 20), torch.int, 0, 10),
((2, 3, 4), torch.int, 0, 5),
((2, 3, 4, 5), torch.int, 0, 5),
]
)
def test_log1p_int(self, input_shape, dtype, low, high):
class Log1p(nn.Module):
def forward(self, input):
return torch.ops.aten.log1p.default(input)

inputs = [
torch.randint(low, high, input_shape, dtype=dtype).abs() + 0.001
] # ensure positive input
self.run_test(
Log1p(),
inputs,
)

@parameterized.expand(
[
(torch.full((1, 20), 2, dtype=torch.float),),
(torch.full((2, 3, 4), 3, dtype=torch.float),),
(torch.full((2, 3, 4, 5), 4, dtype=torch.float),),
]
)
def test_log1p_const_float(self, data):
class Log1p(nn.Module):
def forward(self, input):
return torch.ops.aten.log1p.default(input)

inputs = [data]
self.run_test(
Log1p(),
inputs,
)


if __name__ == "__main__":
run_tests()
Loading