Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Added support for aten::unflatten converter #1808

Closed
wants to merge 2 commits into from

Conversation

andi4191
Copy link
Contributor

@andi4191 andi4191 commented Apr 5, 2023

Description

Added a converter support for aten::unflatten.

This PR is blocked by #1647
This PR should be merged after the above PR is merged.

Fixes # (issue)

Type of change

Please delete options that are not relevant and/or add your own.

  • New feature (non-breaking change which adds functionality)

Checklist:

  • My code follows the style guidelines of this project (You can use the linters)
  • I have performed a self-review of my own code
  • I have commented my code, particularly in hard-to-understand areas and hacks
  • I have made corresponding changes to the documentation
  • I have added tests to verify my fix or my feature
  • New and existing unit tests pass locally with my changes
  • I have added the relevant labels to my PR in so that relevant reviewers are notified

Signed-off-by: Anurag Dixit <a.dixit91@gmail.com>
@github-actions github-actions bot added component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: core Issues re: The core compiler component: tests Issues re: Tests labels Apr 5, 2023
@github-actions github-actions bot requested a review from bowang007 April 5, 2023 17:35
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/home/runner/work/TensorRT/TensorRT/core/conversion/converters/impl/shuffle.cpp b/tmp/changes.txt
index 314fe74..4ac9699 100644
--- a/home/runner/work/TensorRT/TensorRT/core/conversion/converters/impl/shuffle.cpp
+++ b/tmp/changes.txt
@@ -66,102 +66,102 @@ static auto shuffle_registrations TORCHTRT_UNUSED =
             }})
        .pattern(
            {"aten::unflatten.int(Tensor self, int dim, int[] sizes) -> (Tensor)",
-              [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-                auto in = args[0].ITensorOrFreeze(ctx);
-                auto dim = args[1].unwrapToInt();
-                auto in_shape = util::toVec(in->getDimensions());
-                std::vector<int64_t> new_shape;
-                nvinfer1::ITensor* shape_tensor;
-                if (ctx->input_is_dynamic) {
-                  /*
-                   * In case the dim is negative
-                   * If the dim in negative range is larger than in_shape,
-                   * then it should run into index out of bound error as expected
-                   */
-                  if (dim < 0) {
-                    dim = in_shape.size() + dim;
-                  }
-                  std::cout << "Dynamic shape case" << std::endl;
-                  LOG_DEBUG("Using dynamic version of reshape layer");
-                  if (args[2].isITensorList()) {
-                    std::cout << "isTensorList case" << std::endl;
-                    LOG_DEBUG("Shape tensor is an ITensorList");
-                    auto expand_shape = args[2].unwrapToITensorList();
-                    auto shape_layer = ctx->net->addShape(*in);
-                    TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n);
-                    auto shape_1d_tensor = shape_layer->getOutput(0);
-
-                    std::vector<int> before_dim_indices_vector(dim);
-                    std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0);
-
-                    nvinfer1::ITensor* before_dim_gather_out = nullptr;
-                    if(before_dim_indices_vector.size()){
-                      at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32);
-                      auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices);
-                      auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0);
-                      TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n);
-                      before_dim_gather_out = before_dim_gather_layer->getOutput(0);
-                    }
-
-                    std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1));
-                    std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1);
-
-                    nvinfer1::ITensor* after_dim_gather_out = nullptr;
-                    if(after_dim_indices_vector.size()){ 
-                      at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32);
-                      auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices);
-                      auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0);
-                      TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n);
-                      after_dim_gather_out = after_dim_gather_layer->getOutput(0);
-                    }
-
-                    std::vector<nvinfer1::ITensor*> shape_tensors;
-                    if(before_dim_gather_out){
-                      shape_tensors.push_back(before_dim_gather_out);
-                    }
-                    for(auto new_shape_tensor : expand_shape){
-                      shape_tensors.push_back(new_shape_tensor);
-                    }
-                    if(after_dim_gather_out){
-                      shape_tensors.push_back(after_dim_gather_out);
-                    }
-
-                    auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size());
-                    TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n);
-                    shape_tensor = shape_cat_layer->getOutput(0);
-                    LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions());
-                  } else if (args[2].isIntList()) {
-                    auto shape_vec = args[2].unwrapToIntList().vec();                    
-                    // New shape 
-                    new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim);
-                    new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end());
-                    new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end());
-
-                    shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32));
-                  } else {
-                    LOG_ERROR(
-                      "Invalid IValue type of " <<  args[2].ivalue_type()
-                                                << " detected for shape tensor from node: " << *n);
-                  }
-                }
-                else {
-                  new_shape = torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec();
-                }
-                auto shuffle = ctx->net->addShuffle(*in);
-                shuffle->setName(util::node_info(n).c_str());
-                TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n);
-
-                if (ctx->input_is_dynamic) {
-                  shuffle->setInput(1, *shape_tensor);
-                } else {
-                  shuffle->setReshapeDimensions(util::toDims(new_shape));
-                }
-
-                auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
-                LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
-
-                return true;
-              }})
+             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+               auto in = args[0].ITensorOrFreeze(ctx);
+               auto dim = args[1].unwrapToInt();
+               auto in_shape = util::toVec(in->getDimensions());
+               std::vector<int64_t> new_shape;
+               nvinfer1::ITensor* shape_tensor;
+               if (ctx->input_is_dynamic) {
+                 /*
+                  * In case the dim is negative
+                  * If the dim in negative range is larger than in_shape,
+                  * then it should run into index out of bound error as expected
+                  */
+                 if (dim < 0) {
+                   dim = in_shape.size() + dim;
+                 }
+                 std::cout << "Dynamic shape case" << std::endl;
+                 LOG_DEBUG("Using dynamic version of reshape layer");
+                 if (args[2].isITensorList()) {
+                   std::cout << "isTensorList case" << std::endl;
+                   LOG_DEBUG("Shape tensor is an ITensorList");
+                   auto expand_shape = args[2].unwrapToITensorList();
+                   auto shape_layer = ctx->net->addShape(*in);
+                   TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n);
+                   auto shape_1d_tensor = shape_layer->getOutput(0);
+
+                   std::vector<int> before_dim_indices_vector(dim);
+                   std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0);
+
+                   nvinfer1::ITensor* before_dim_gather_out = nullptr;
+                   if (before_dim_indices_vector.size()) {
+                     at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32);
+                     auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices);
+                     auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0);
+                     TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n);
+                     before_dim_gather_out = before_dim_gather_layer->getOutput(0);
+                   }
+
+                   std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1));
+                   std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1);
+
+                   nvinfer1::ITensor* after_dim_gather_out = nullptr;
+                   if (after_dim_indices_vector.size()) {
+                     at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32);
+                     auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices);
+                     auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0);
+                     TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n);
+                     after_dim_gather_out = after_dim_gather_layer->getOutput(0);
+                   }
+
+                   std::vector<nvinfer1::ITensor*> shape_tensors;
+                   if (before_dim_gather_out) {
+                     shape_tensors.push_back(before_dim_gather_out);
+                   }
+                   for (auto new_shape_tensor : expand_shape) {
+                     shape_tensors.push_back(new_shape_tensor);
+                   }
+                   if (after_dim_gather_out) {
+                     shape_tensors.push_back(after_dim_gather_out);
+                   }
+
+                   auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size());
+                   TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n);
+                   shape_tensor = shape_cat_layer->getOutput(0);
+                   LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions());
+                 } else if (args[2].isIntList()) {
+                   auto shape_vec = args[2].unwrapToIntList().vec();
+                   // New shape
+                   new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim);
+                   new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end());
+                   new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end());
+
+                   shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32));
+                 } else {
+                   LOG_ERROR(
+                       "Invalid IValue type of " << args[2].ivalue_type()
+                                                 << " detected for shape tensor from node: " << *n);
+                 }
+               } else {
+                 new_shape =
+                     torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec();
+               }
+               auto shuffle = ctx->net->addShuffle(*in);
+               shuffle->setName(util::node_info(n).c_str());
+               TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n);
+
+               if (ctx->input_is_dynamic) {
+                 shuffle->setInput(1, *shape_tensor);
+               } else {
+                 shuffle->setReshapeDimensions(util::toDims(new_shape));
+               }
+
+               auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
+               LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
+
+               return true;
+             }})
        .pattern(
            {"aten::reshape(Tensor self, int[] shape) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
ERROR: Some files do not conform to style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to Python style guidelines

Signed-off-by: Anurag Dixit <a.dixit91@gmail.com>
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to Python style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/home/runner/work/TensorRT/TensorRT/core/conversion/converters/impl/shuffle.cpp b/tmp/changes.txt
index 314fe74..4ac9699 100644
--- a/home/runner/work/TensorRT/TensorRT/core/conversion/converters/impl/shuffle.cpp
+++ b/tmp/changes.txt
@@ -66,102 +66,102 @@ static auto shuffle_registrations TORCHTRT_UNUSED =
             }})
        .pattern(
            {"aten::unflatten.int(Tensor self, int dim, int[] sizes) -> (Tensor)",
-              [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-                auto in = args[0].ITensorOrFreeze(ctx);
-                auto dim = args[1].unwrapToInt();
-                auto in_shape = util::toVec(in->getDimensions());
-                std::vector<int64_t> new_shape;
-                nvinfer1::ITensor* shape_tensor;
-                if (ctx->input_is_dynamic) {
-                  /*
-                   * In case the dim is negative
-                   * If the dim in negative range is larger than in_shape,
-                   * then it should run into index out of bound error as expected
-                   */
-                  if (dim < 0) {
-                    dim = in_shape.size() + dim;
-                  }
-                  std::cout << "Dynamic shape case" << std::endl;
-                  LOG_DEBUG("Using dynamic version of reshape layer");
-                  if (args[2].isITensorList()) {
-                    std::cout << "isTensorList case" << std::endl;
-                    LOG_DEBUG("Shape tensor is an ITensorList");
-                    auto expand_shape = args[2].unwrapToITensorList();
-                    auto shape_layer = ctx->net->addShape(*in);
-                    TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n);
-                    auto shape_1d_tensor = shape_layer->getOutput(0);
-
-                    std::vector<int> before_dim_indices_vector(dim);
-                    std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0);
-
-                    nvinfer1::ITensor* before_dim_gather_out = nullptr;
-                    if(before_dim_indices_vector.size()){
-                      at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32);
-                      auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices);
-                      auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0);
-                      TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n);
-                      before_dim_gather_out = before_dim_gather_layer->getOutput(0);
-                    }
-
-                    std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1));
-                    std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1);
-
-                    nvinfer1::ITensor* after_dim_gather_out = nullptr;
-                    if(after_dim_indices_vector.size()){ 
-                      at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32);
-                      auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices);
-                      auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0);
-                      TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n);
-                      after_dim_gather_out = after_dim_gather_layer->getOutput(0);
-                    }
-
-                    std::vector<nvinfer1::ITensor*> shape_tensors;
-                    if(before_dim_gather_out){
-                      shape_tensors.push_back(before_dim_gather_out);
-                    }
-                    for(auto new_shape_tensor : expand_shape){
-                      shape_tensors.push_back(new_shape_tensor);
-                    }
-                    if(after_dim_gather_out){
-                      shape_tensors.push_back(after_dim_gather_out);
-                    }
-
-                    auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size());
-                    TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n);
-                    shape_tensor = shape_cat_layer->getOutput(0);
-                    LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions());
-                  } else if (args[2].isIntList()) {
-                    auto shape_vec = args[2].unwrapToIntList().vec();                    
-                    // New shape 
-                    new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim);
-                    new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end());
-                    new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end());
-
-                    shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32));
-                  } else {
-                    LOG_ERROR(
-                      "Invalid IValue type of " <<  args[2].ivalue_type()
-                                                << " detected for shape tensor from node: " << *n);
-                  }
-                }
-                else {
-                  new_shape = torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec();
-                }
-                auto shuffle = ctx->net->addShuffle(*in);
-                shuffle->setName(util::node_info(n).c_str());
-                TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n);
-
-                if (ctx->input_is_dynamic) {
-                  shuffle->setInput(1, *shape_tensor);
-                } else {
-                  shuffle->setReshapeDimensions(util::toDims(new_shape));
-                }
-
-                auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
-                LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
-
-                return true;
-              }})
+             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+               auto in = args[0].ITensorOrFreeze(ctx);
+               auto dim = args[1].unwrapToInt();
+               auto in_shape = util::toVec(in->getDimensions());
+               std::vector<int64_t> new_shape;
+               nvinfer1::ITensor* shape_tensor;
+               if (ctx->input_is_dynamic) {
+                 /*
+                  * In case the dim is negative
+                  * If the dim in negative range is larger than in_shape,
+                  * then it should run into index out of bound error as expected
+                  */
+                 if (dim < 0) {
+                   dim = in_shape.size() + dim;
+                 }
+                 std::cout << "Dynamic shape case" << std::endl;
+                 LOG_DEBUG("Using dynamic version of reshape layer");
+                 if (args[2].isITensorList()) {
+                   std::cout << "isTensorList case" << std::endl;
+                   LOG_DEBUG("Shape tensor is an ITensorList");
+                   auto expand_shape = args[2].unwrapToITensorList();
+                   auto shape_layer = ctx->net->addShape(*in);
+                   TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n);
+                   auto shape_1d_tensor = shape_layer->getOutput(0);
+
+                   std::vector<int> before_dim_indices_vector(dim);
+                   std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0);
+
+                   nvinfer1::ITensor* before_dim_gather_out = nullptr;
+                   if (before_dim_indices_vector.size()) {
+                     at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32);
+                     auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices);
+                     auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0);
+                     TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n);
+                     before_dim_gather_out = before_dim_gather_layer->getOutput(0);
+                   }
+
+                   std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1));
+                   std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1);
+
+                   nvinfer1::ITensor* after_dim_gather_out = nullptr;
+                   if (after_dim_indices_vector.size()) {
+                     at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32);
+                     auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices);
+                     auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0);
+                     TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n);
+                     after_dim_gather_out = after_dim_gather_layer->getOutput(0);
+                   }
+
+                   std::vector<nvinfer1::ITensor*> shape_tensors;
+                   if (before_dim_gather_out) {
+                     shape_tensors.push_back(before_dim_gather_out);
+                   }
+                   for (auto new_shape_tensor : expand_shape) {
+                     shape_tensors.push_back(new_shape_tensor);
+                   }
+                   if (after_dim_gather_out) {
+                     shape_tensors.push_back(after_dim_gather_out);
+                   }
+
+                   auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size());
+                   TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n);
+                   shape_tensor = shape_cat_layer->getOutput(0);
+                   LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions());
+                 } else if (args[2].isIntList()) {
+                   auto shape_vec = args[2].unwrapToIntList().vec();
+                   // New shape
+                   new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim);
+                   new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end());
+                   new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end());
+
+                   shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32));
+                 } else {
+                   LOG_ERROR(
+                       "Invalid IValue type of " << args[2].ivalue_type()
+                                                 << " detected for shape tensor from node: " << *n);
+                 }
+               } else {
+                 new_shape =
+                     torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec();
+               }
+               auto shuffle = ctx->net->addShuffle(*in);
+               shuffle->setName(util::node_info(n).c_str());
+               TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n);
+
+               if (ctx->input_is_dynamic) {
+                 shuffle->setInput(1, *shape_tensor);
+               } else {
+                 shuffle->setReshapeDimensions(util::toDims(new_shape));
+               }
+
+               auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
+               LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
+
+               return true;
+             }})
        .pattern(
            {"aten::reshape(Tensor self, int[] shape) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
diff --git a/home/runner/work/TensorRT/TensorRT/tests/cpp/test_dynamic_size.cpp b/tmp/changes.txt
index 5870796..bd2bf90 100644
--- a/home/runner/work/TensorRT/TensorRT/tests/cpp/test_dynamic_size.cpp
+++ b/tmp/changes.txt
@@ -5,7 +5,6 @@
#include "tests/util/util.h"
#include "torch/csrc/jit/ir/irparser.h"

-
TEST(Converters, ATenUnflattenDynShapeShapeCorrectly) {
  const auto graph = R"IR(
    graph(%x.1 : Tensor):
ERROR: Some files do not conform to style guidelines

@facebook-github-bot
Copy link
Contributor

Hi @andi4191!

Thank you for your pull request.

We require contributors to sign our Contributor License Agreement, and yours needs attention.

You currently have a record in our system, but the CLA is no longer valid, and will need to be resubmitted.

Process

In order for us to review and merge your suggested changes, please sign at https://code.facebook.com/cla. If you are contributing on behalf of someone else (eg your employer), the individual CLA may not be sufficient and your employer may need to sign the corporate CLA.

Once the CLA is signed, our tooling will perform checks and validations. Afterwards, the pull request will be tagged with CLA signed. The tagging process may take up to 1 hour after signing. Please give it that time before contacting us about it.

If you have received this in error or have any questions, please contact us at cla@meta.com. Thanks!

@peri044
Copy link
Collaborator

peri044 commented Apr 6, 2023

@andi4191 Can you rebase and fix linter issues ? Merged #1647 into master

@andi4191
Copy link
Contributor Author

Created a replica PR for tracking this #2097. Closing this.

@andi4191 andi4191 closed this Jul 11, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: conversion Issues re: Conversion stage component: converters Issues re: Specific op converters component: core Issues re: The core compiler component: tests Issues re: Tests
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants