Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FX] remove op_lowering_disallow_list and format revert #1261

Merged
merged 6 commits into from
Aug 12, 2022
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -751,7 +751,7 @@ parameters:
# Nightly platform config
torch-nightly-build:
type: string
default: "1.13.0.dev20220731+cu113"
default: "1.13.0.dev20220810+cu113"
torch-nightly-build-index:
type: string
default: "https://download.pytorch.org/whl/nightly/cu113"
Expand Down
14 changes: 12 additions & 2 deletions docsrc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,9 @@
}

html_show_sourcelink = True
html_sidebars = {"**": ["logo-text.html", "globaltoc.html", "localtoc.html", "searchbox.html"]}
html_sidebars = {
"**": ["logo-text.html", "globaltoc.html", "localtoc.html", "searchbox.html"]
}

# extensions.append("sphinx_material")
html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
Expand Down Expand Up @@ -183,7 +185,15 @@ def handle_item(fieldarg, content):
typename = typename.replace("long", "python:long")
typename = typename.replace("float", "python:float")
typename = typename.replace("type", "python:type")
par.extend(self.make_xrefs(self.typerolename, domain, typename, addnodes.literal_emphasis, **kw))
par.extend(
self.make_xrefs(
self.typerolename,
domain,
typename,
addnodes.literal_emphasis,
**kw
)
)
else:
par += fieldtype
par += nodes.Text(")")
Expand Down
4 changes: 3 additions & 1 deletion examples/custom_converters/elu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,9 @@
import torch_tensorrt

# After "python3 setup install", you should find this .so file under generated "build" directory
torch.ops.load_library("./elu_converter/build/lib.linux-x86_64-3.6/elu_converter.cpython-36m-x86_64-linux-gnu.so")
torch.ops.load_library(
"./elu_converter/build/lib.linux-x86_64-3.6/elu_converter.cpython-36m-x86_64-linux-gnu.so"
)


class Elu(torch.nn.Module):
Expand Down
4 changes: 3 additions & 1 deletion examples/fx/fx2trt_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,4 +141,6 @@ def get_input(self, inputs):

# Make sure the results match
regular_model_output = model(*inputs)
torch.testing.assert_close(reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2)
torch.testing.assert_close(
reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2
)
12 changes: 9 additions & 3 deletions examples/fx/hugging_face_torchdynamo_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,14 +353,18 @@ def run_all_eval(args, optimize_ctx, optimize_name, dtype):
eval_inputs = (input_ids,)

# Correctness check
is_accurate = check_correctness(args, model, eval_inputs, optimize_ctx, optimize_name)
is_accurate = check_correctness(
args, model, eval_inputs, optimize_ctx, optimize_name
)
# Profile eager
t, m = bench_model_eval(args, "eager", model, eval_inputs, NullContext())
results.append(create_record(model_name, dtype, is_accurate, "eager", t, m))

# Profile Dynamo nvfuser
t, m = bench_model_eval(args, optimize_name, model, eval_inputs, optimize_ctx)
results.append(create_record(model_name, dtype, is_accurate, optimize_name, t, m))
results.append(
create_record(model_name, dtype, is_accurate, optimize_name, t, m)
)

# calculate relative improvements
base_r = results[-2]
Expand Down Expand Up @@ -412,7 +416,9 @@ def main():
if optimize_name == "dynamo_fx2trt_fp32":
experiment = partial(experiment, dtype=torch.float32)

experiment = partial(experiment, optimize_ctx=optimize_ctx, optimize_name=optimize_name)
experiment = partial(
experiment, optimize_ctx=optimize_ctx, optimize_name=optimize_name
)
experiment(args)


Expand Down
5 changes: 4 additions & 1 deletion examples/fx/lower_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,10 @@ def benchmark(
),
]

results = [run_configuration_benchmark(deepcopy(model), inputs, conf_) for conf_ in configurations]
results = [
run_configuration_benchmark(deepcopy(model), inputs, conf_)
for conf_ in configurations
]

for res in results:
print(res.format())
Expand Down
4 changes: 3 additions & 1 deletion examples/fx/quantized_resnet_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,9 @@ def build_int8_trt_implicit_quant(rn18):
InputTensorSpec.from_tensors([data]),
logger_level=trt.Logger.VERBOSE,
)
interpreter_result = interp.run(lower_precision=LowerPrecision.INT8, strict_type_constraints=True)
interpreter_result = interp.run(
lower_precision=LowerPrecision.INT8, strict_type_constraints=True
)
trt_mod = TRTModule(
interpreter_result.engine,
interpreter_result.input_names,
Expand Down
44 changes: 36 additions & 8 deletions examples/fx/torch_trt_simple_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,35 +12,63 @@ def test_torch_tensorrt(model, inputs):
# fp32 test
with torch.inference_mode():
ref_fp32 = model_ts(*inputs_ts)
trt_ts_module = torch_tensorrt.compile(model_ts, inputs=inputs_ts, enabled_precisions={torch.float32})
trt_ts_module = torch_tensorrt.compile(
model_ts, inputs=inputs_ts, enabled_precisions={torch.float32}
)
result_fp32 = trt_ts_module(*inputs_ts)
assert torch.nn.functional.cosine_similarity(ref_fp32.flatten(), result_fp32.flatten(), dim=0) > 0.9999
assert (
torch.nn.functional.cosine_similarity(
ref_fp32.flatten(), result_fp32.flatten(), dim=0
)
> 0.9999
)
# fp16 test
model_ts = model_ts.half()
inputs_ts = [i.cuda().half() for i in inputs_ts]
with torch.inference_mode():
ref_fp16 = model_ts(*inputs_ts)
trt_ts_module = torch_tensorrt.compile(model_ts, inputs=inputs_ts, enabled_precisions={torch.float16})
trt_ts_module = torch_tensorrt.compile(
model_ts, inputs=inputs_ts, enabled_precisions={torch.float16}
)
result_fp16 = trt_ts_module(*inputs_ts)
assert torch.nn.functional.cosine_similarity(ref_fp16.flatten(), result_fp16.flatten(), dim=0) > 0.99
assert (
torch.nn.functional.cosine_similarity(
ref_fp16.flatten(), result_fp16.flatten(), dim=0
)
> 0.99
)

# FX path
model_fx = copy.deepcopy(model)
inputs_fx = copy.deepcopy(inputs)
# fp32 test
with torch.inference_mode():
ref_fp32 = model_fx(*inputs_fx)
trt_fx_module = torch_tensorrt.compile(model_fx, ir="fx", inputs=inputs_fx, enabled_precisions={torch.float32})
trt_fx_module = torch_tensorrt.compile(
model_fx, ir="fx", inputs=inputs_fx, enabled_precisions={torch.float32}
)
result_fp32 = trt_fx_module(*inputs_fx)
assert torch.nn.functional.cosine_similarity(ref_fp32.flatten(), result_fp32.flatten(), dim=0) > 0.9999
assert (
torch.nn.functional.cosine_similarity(
ref_fp32.flatten(), result_fp32.flatten(), dim=0
)
> 0.9999
)
# fp16 test
model_fx = model_fx.cuda().half()
inputs_fx = [i.cuda().half() for i in inputs_fx]
with torch.inference_mode():
ref_fp16 = model_fx(*inputs_fx)
trt_fx_module = torch_tensorrt.compile(model_fx, ir="fx", inputs=inputs_fx, enabled_precisions={torch.float16})
trt_fx_module = torch_tensorrt.compile(
model_fx, ir="fx", inputs=inputs_fx, enabled_precisions={torch.float16}
)
result_fp16 = trt_fx_module(*inputs_fx)
assert torch.nn.functional.cosine_similarity(ref_fp16.flatten(), result_fp16.flatten(), dim=0) > 0.99
assert (
torch.nn.functional.cosine_similarity(
ref_fp16.flatten(), result_fp16.flatten(), dim=0
)
> 0.99
)


if __name__ == "__main__":
Expand Down
5 changes: 4 additions & 1 deletion examples/fx/torchdynamo_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,10 @@ def benchmark(
),
]

results = [run_configuration_benchmark(deepcopy(model), inputs, conf_) for conf_ in configurations]
results = [
run_configuration_benchmark(deepcopy(model), inputs, conf_)
for conf_ in configurations
]

for res in results:
print(res.format())
Expand Down
4 changes: 3 additions & 1 deletion examples/int8/training/vgg16/export_ckpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,9 @@ def test(model, dataloader, crit):
),
)

testing_dataloader = torch.utils.data.DataLoader(testing_dataset, batch_size=32, shuffle=False, num_workers=2)
testing_dataloader = torch.utils.data.DataLoader(
testing_dataset, batch_size=32, shuffle=False, num_workers=2
)

crit = torch.nn.CrossEntropyLoss()

Expand Down
4 changes: 3 additions & 1 deletion examples/int8/training/vgg16/export_qat.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,9 @@ def test(model, dataloader, crit):
),
)

testing_dataloader = torch.utils.data.DataLoader(testing_dataset, batch_size=32, shuffle=False, num_workers=2)
testing_dataloader = torch.utils.data.DataLoader(
testing_dataset, batch_size=32, shuffle=False, num_workers=2
)

crit = torch.nn.CrossEntropyLoss()

Expand Down
29 changes: 22 additions & 7 deletions examples/int8/training/vgg16/finetune_qat.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,20 @@

from vgg16 import vgg16

PARSER = argparse.ArgumentParser(description="VGG16 example to use with Torch-TensorRT PTQ")
PARSER.add_argument("--epochs", default=100, type=int, help="Number of total epochs to train")
PARSER = argparse.ArgumentParser(
description="VGG16 example to use with Torch-TensorRT PTQ"
)
PARSER.add_argument(
"--epochs", default=100, type=int, help="Number of total epochs to train"
)
PARSER.add_argument(
"--enable_qat",
action="store_true",
help="Enable quantization aware training. This is recommended to perform on a pre-trained model.",
)
PARSER.add_argument("--batch-size", default=128, type=int, help="Batch size to use when training")
PARSER.add_argument(
"--batch-size", default=128, type=int, help="Batch size to use when training"
)
PARSER.add_argument("--lr", default=0.1, type=float, help="Initial learning rate")
PARSER.add_argument("--drop-ratio", default=0.0, type=float, help="Dropout ratio")
PARSER.add_argument("--momentum", default=0.9, type=float, help="Momentum")
Expand Down Expand Up @@ -194,7 +200,9 @@ def main():
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
),
)
Expand All @@ -209,7 +217,9 @@ def main():
transform=transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
),
)
Expand Down Expand Up @@ -309,9 +319,14 @@ def train(model, dataloader, crit, opt, epoch):

running_loss += loss.item()
if batch % 50 == 49:
writer.add_scalar("Training Loss", running_loss / 100, epoch * len(dataloader) + batch)
writer.add_scalar(
"Training Loss", running_loss / 100, epoch * len(dataloader) + batch
)
writer.close()
print("Batch: [%5d | %5d] loss: %.3f" % (batch + 1, len(dataloader), running_loss / 100))
print(
"Batch: [%5d | %5d] loss: %.3f"
% (batch + 1, len(dataloader), running_loss / 100)
)
running_loss = 0.0


Expand Down
29 changes: 22 additions & 7 deletions examples/int8/training/vgg16/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,15 @@

from vgg16 import vgg16

PARSER = argparse.ArgumentParser(description="VGG16 example to use with Torch-TensorRT PTQ")
PARSER.add_argument("--epochs", default=100, type=int, help="Number of total epochs to train")
PARSER.add_argument("--batch-size", default=128, type=int, help="Batch size to use when training")
PARSER = argparse.ArgumentParser(
description="VGG16 example to use with Torch-TensorRT PTQ"
)
PARSER.add_argument(
"--epochs", default=100, type=int, help="Number of total epochs to train"
)
PARSER.add_argument(
"--batch-size", default=128, type=int, help="Batch size to use when training"
)
PARSER.add_argument("--lr", default=0.1, type=float, help="Initial learning rate")
PARSER.add_argument("--drop-ratio", default=0.0, type=float, help="Dropout ratio")
PARSER.add_argument("--momentum", default=0.9, type=float, help="Momentum")
Expand Down Expand Up @@ -89,7 +95,9 @@ def main():
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
),
)
Expand All @@ -104,7 +112,9 @@ def main():
transform=transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
),
)
Expand Down Expand Up @@ -182,9 +192,14 @@ def train(model, dataloader, crit, opt, epoch):

running_loss += loss.item()
if batch % 50 == 49:
writer.add_scalar("Training Loss", running_loss / 100, epoch * len(dataloader) + batch)
writer.add_scalar(
"Training Loss", running_loss / 100, epoch * len(dataloader) + batch
)
writer.close()
print("Batch: [%5d | %5d] loss: %.3f" % (batch + 1, len(dataloader), running_loss / 100))
print(
"Batch: [%5d | %5d] loss: %.3f"
% (batch + 1, len(dataloader), running_loss / 100)
)
running_loss = 0.0


Expand Down
8 changes: 6 additions & 2 deletions examples/int8/training/vgg16/test_qat.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,9 @@ def test(model, dataloader, crit):
),
)

testing_dataloader = torch.utils.data.DataLoader(testing_dataset, batch_size=32, shuffle=False, num_workers=2)
testing_dataloader = torch.utils.data.DataLoader(
testing_dataset, batch_size=32, shuffle=False, num_workers=2
)

crit = torch.nn.CrossEntropyLoss()

Expand All @@ -94,6 +96,8 @@ def test(model, dataloader, crit):
}
new_mod = torch.jit.load("trained_vgg16_qat.jit.pt")
trt_ts_module = torchtrt.compile(new_mod, **compile_settings)
testing_dataloader = torch.utils.data.DataLoader(testing_dataset, batch_size=1, shuffle=False, num_workers=2)
testing_dataloader = torch.utils.data.DataLoader(
testing_dataset, batch_size=1, shuffle=False, num_workers=2
)
test_loss, test_acc = test(trt_ts_module, testing_dataloader, crit)
print("[TRTorch] Test Loss: {:.5f} Test Acc: {:.2f}%".format(test_loss, 100 * test_acc))
Loading