Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat (//core/conversion) : Add converter for torch.bitwise_not #1029

Merged
merged 8 commits into from
Jun 23, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions core/conversion/converters/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ cc_library(
"NodeConverterRegistry.cpp",
"impl/activation.cpp",
"impl/batch_norm.cpp",
"impl/bitwise.cpp",
"impl/cast.cpp",
"impl/concat.cpp",
"impl/constant.cpp",
Expand Down
55 changes: 55 additions & 0 deletions core/conversion/converters/impl/bitwise.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
#include "core/conversion/converters/converters.h"
#include "core/util/prelude.h"

#include <torch/torch.h>

namespace torch_tensorrt {
namespace core {
namespace conversion {
namespace converters {
namespace impl {

auto bitwise_not_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns().pattern(
{"aten::bitwise_not(Tensor self) -> Tensor", [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensorOrFreeze(ctx);
nvinfer1::ILayer* out;

if (in->getType() == nvinfer1::DataType::kINT32) {
// Integer case, using ~x = -x - 1
auto neg_one = torch::tensor({-1}, util::TRTDataTypeToScalarType(in->getType()));
auto neg_one_const = tensor_to_const(ctx, neg_one);
auto neg = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kPROD,
in,
neg_one_const,
util::node_info(n) + std::string("_Negation"));
TORCHTRT_CHECK(neg, "Unable to create prod layer from node: " << *n);
out = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kSUM,
neg->getOutput(0),
neg_one_const,
util::node_info(n) + std::string("_SubOne"));
TORCHTRT_CHECK(out, "Unable to create sum layer from node: " << *n);
} else if (in->getType() == nvinfer1::DataType::kBOOL) {
// Boolean case
out = ctx->net->addUnary(*in, nvinfer1::UnaryOperation::kNOT);
TORCHTRT_CHECK(out, "Unable to create logical not layer from node: " << *n);
} else {
LOG_ERROR("Input tensor must be 32 bit integer or boolean");
return false;
}

out->setName(util::node_info(n).c_str());
auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], out->getOutput(0));
LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());

return true;
}});

} // namespace impl
} // namespace converters
} // namespace conversion
} // namespace core
} // namespace torch_tensorrt
5 changes: 4 additions & 1 deletion core/lowering/register_trt_placeholder_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
/// Op marks a Tensor to be conveted from an Torch Tensor
/// to a TRT constant Tensor
Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
Operator(
"trt::const(Tensor val) -> Tensor",
[](Stack& stack) { /*noop*/ },
aliasAnalysisFromSchema()),
});

} // namespace jit
Expand Down
5 changes: 5 additions & 0 deletions tests/core/conversion/converters/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@ converter_test(
name = "test_batch_norm",
)

converter_test(
name = "test_bitwise",
)

converter_test(
name = "test_instance_norm",
)
Expand Down Expand Up @@ -136,6 +140,7 @@ test_suite(
tests = [
":test_activation",
":test_batch_norm",
":test_bitwise",
":test_instance_norm",
":test_cast",
":test_clone",
Expand Down
42 changes: 42 additions & 0 deletions tests/core/conversion/converters/test_bitwise.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
#include <string>
#include "core/compiler.h"
#include "gtest/gtest.h"
#include "tests/util/util.h"
#include "torch/csrc/jit/ir/irparser.h"

std::string gen_test_graph() {
return R"IR(
graph(%0: Tensor):
%3 : Tensor = aten::bitwise_not(%0)
return (%3))IR";
}

#define test_bitwise_not(dtype) \
TEST(Converters, ATenBitwiseNot##dtype##ConvertsCorrectly) { \
const auto graph = gen_test_graph(); \
\
auto g = std::make_shared<torch::jit::Graph>(); \
torch::jit::parseIR(graph, g.get()); \
\
at::Tensor in; \
if (strcmp(#dtype, "Integer") == 0) \
in = at::randint(-128, 128, {10}, {at::kCUDA}).toType(at::kInt); \
if (strcmp(#dtype, "Boolean") == 0) \
in = at::randint(0, 1, {10}, {at::kCUDA}).toType(at::kBool); \
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); \
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in}); \
\
in = at::clone(in); \
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); \
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in}); \
\
auto jit_int = jit_results[0].toType(at::kInt); \
auto trt_int = trt_results[0].toType(at::kInt); \
\
ASSERT_TRUE(torch_tensorrt::tests::util::exactlyEqual(jit_int, trt_int)); \
}

test_bitwise_not(Integer);
test_bitwise_not(Boolean);

#undef test_bitwise_not
3 changes: 2 additions & 1 deletion tests/util/run_graph_engine.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
#include "core/ir/ir.h"
#include "core/runtime/runtime.h"
#include "core/util/prelude.h"
#include "core/util/trt_util.h"
#include "cuda_runtime_api.h"
#include "torch/csrc/jit/ir/ir.h"
#include "torch/csrc/jit/ir/irparser.h"
Expand All @@ -19,7 +20,7 @@ namespace util {
std::vector<core::ir::Input> toInputs(std::vector<at::Tensor> ten) {
std::vector<core::ir::Input> a;
for (auto i : ten) {
a.push_back(core::ir::Input(core::util::toVec(i.sizes())));
a.push_back(core::ir::Input(core::util::toVec(i.sizes()), core::util::ScalarTypeToTRTDataType(i.scalar_type())));
}
return std::move(a);
}
Expand Down