Skip to content

Commit

Permalink
Test case for select_scatter
Browse files Browse the repository at this point in the history
  • Loading branch information
apbose committed Jan 5, 2024
1 parent 7040582 commit 81a2715
Showing 1 changed file with 63 additions and 1 deletion.
64 changes: 63 additions & 1 deletion tests/py/dynamo/lowering/test_decompositions.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,7 +420,7 @@ def forward(self, x):
f"MaxPool3d TRT outputs don't match with the original model.",
)

def test_lowering_select_scatter_module(self):
def test_lowering_select_scatter_dimZero_module(self):
class selectScatter(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
Expand Down Expand Up @@ -484,5 +484,67 @@ def forward(self, x, src, dim, index):
)


def test_lowering_select_scatter_dimOne_module(self):
class selectScatter(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)

def forward(self, x, src, dim, index):
y = torch.ops.aten.select_scatter.default(x, src, dim, index)
return y

# Operations expected to be removed in the traced graph after decompositions
expected_ops = {
torch.ops.aten.slice.Tensor,
torch.ops.aten.squeeze.dim,
torch.ops.aten.cat.default,
}
unexpected_ops = {torch.ops.aten.select_scatter.default}

inputs = [torch.zeros(2, 2).cuda(), torch.ones(2).cuda(), 1, 0]

fx_graph = torch.fx.symbolic_trace(selectScatter())
unexpected_ops_seen, expected_ops_unseen = lower_graph_testing(
fx_graph,
inputs,
expected_ops=expected_ops,
unexpected_ops=unexpected_ops,
min_block_size=1,
)

self.assertEquals(
len(unexpected_ops_seen),
0,
f"The following unexpected ops were encountered: {unexpected_ops_seen}",
)

self.assertEquals(
len(expected_ops_unseen),
0,
f"The following expected ops were not encountered: {expected_ops_unseen}",
)

torch._dynamo.reset()

# Validate that the results between Torch and Torch-TRT are similar
optimized_model = torch_tensorrt.compile(
fx_graph,
"torch_compile",
inputs,
min_block_size=1,
pass_through_build_failures=True,
)
optimized_model_results = optimized_model(*inputs).detach().cpu()
torch_model_results = fx_graph(*inputs).detach().cpu()

max_diff = float(
torch.max(torch.abs(optimized_model_results - torch_model_results))
)
self.assertAlmostEqual(
max_diff,
0,
DECIMALS_OF_AGREEMENT,
f"Select_scatter TRT outputs don't match with the original model.",
)
if __name__ == "__main__":
run_tests()

0 comments on commit 81a2715

Please sign in to comment.