Skip to content

Commit

Permalink
refactor: Reorging to reduce code duplication and seperating TRT impl…
Browse files Browse the repository at this point in the history
…ementation, example changes with ReLU

Signed-off-by: Naren Dasan <naren@narendasan.com>
  • Loading branch information
narendasan authored and Naren Dasan committed May 1, 2023
1 parent c5cc6e3 commit 1696cd2
Show file tree
Hide file tree
Showing 7 changed files with 217 additions and 104 deletions.
76 changes: 59 additions & 17 deletions py/torch_tensorrt/fx/converters/acc_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
trt_transposed_matmul,
)
from torch_tensorrt.fx.tracer.acc_tracer.acc_ops import contiguous
from torch_tensorrt.fx.converters.impl import activation

_LOGGER: logging.Logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -1004,9 +1005,14 @@ def acc_ops_relu(
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
input_val = kwargs["input"]
operation_type = trt.ActivationType.RELU
return add_activation_layer(network, input_val, operation_type, target, name)

return activation.relu(
network,
target,
SourceIR.ACC,
name,
kwargs["input"],
)


@tensorrt_converter(acc_ops.leaky_relu)
Expand All @@ -1020,8 +1026,14 @@ def acc_ops_leaky_relu(
input_val = kwargs["input"]
negative_slope = kwargs["negative_slope"]
operation_type = trt.ActivationType.LEAKY_RELU
return add_activation_layer(
network, input_val, operation_type, target, name, negative_slope
return activation.convert_activation(
network,
target,
SourceIR.ACC,
name,
operation_type,
input_val,
alpha=negative_slope,
)


Expand All @@ -1036,7 +1048,9 @@ def acc_ops_elu(
input_val = kwargs["input"]
alpha = kwargs["alpha"]
operation_type = trt.ActivationType.ELU
return add_activation_layer(network, input_val, operation_type, target, name, alpha)
return activation.convert_activation(
network, target, SourceIR.ACC, name, operation_type, input_val, alpha=alpha
)


@tensorrt_converter(acc_ops.selu)
Expand All @@ -1049,7 +1063,14 @@ def acc_ops_selu(
) -> Union[TRTTensor, Sequence[TRTTensor]]:
input_val = kwargs["input"]
operation_type = trt.ActivationType.SELU
return add_activation_layer(network, input_val, operation_type, target, name)
return activation.convert_activation(
network,
target,
SourceIR.ACC,
name,
operation_type,
input_val,
)


@tensorrt_converter(acc_ops.softsign)
Expand All @@ -1062,7 +1083,14 @@ def acc_ops_softsign(
) -> Union[TRTTensor, Sequence[TRTTensor]]:
input_val = kwargs["input"]
operation_type = trt.ActivationType.SOFTSIGN
return add_activation_layer(network, input_val, operation_type, target, name)
return activation.convert_activation(
network,
target,
SourceIR.ACC,
name,
operation_type,
input_val,
)


@tensorrt_converter(acc_ops.sin)
Expand Down Expand Up @@ -1140,7 +1168,14 @@ def acc_ops_tanh(
) -> Union[TRTTensor, Sequence[TRTTensor]]:
input_val = kwargs["input"]
operation_type = trt.ActivationType.TANH
return add_activation_layer(network, input_val, operation_type, target, name)
return activation.convert_activation(
network,
target,
SourceIR.ACC,
name,
operation_type,
input_val,
)


@tensorrt_converter(acc_ops.asin)
Expand Down Expand Up @@ -3137,12 +3172,13 @@ def acc_ops_hard_sigmoid(
"of the TensorRT region!"
)

return add_activation_layer(
return activation.convert_activation(
network,
input_val,
trt.ActivationType.HARD_SIGMOID,
target,
SourceIR.ACC,
name,
trt.ActivationType.HARD_SIGMOID,
input_val,
alpha=1 / 6,
beta=0.5,
)
Expand All @@ -3164,8 +3200,13 @@ def acc_ops_sigmoid(
"of the TensorRT region!"
)

return add_activation_layer(
network, input_val, trt.ActivationType.SIGMOID, target, name
return activation.convert_activation(
network,
target,
SourceIR.ACC,
name,
trt.ActivationType.SIGMOID,
input_val,
)


Expand Down Expand Up @@ -3557,12 +3598,13 @@ def acc_ops_hardtanh(
"of the TensorRT region!"
)

return add_activation_layer(
return activation.convert_activation(
network,
input_val,
trt.ActivationType.CLIP,
target,
SourceIR.ACC,
name,
trt.ActivationType.CLIP,
input_val,
alpha=kwargs["min_val"],
beta=kwargs["max_val"],
)
Expand Down
39 changes: 0 additions & 39 deletions py/torch_tensorrt/fx/converters/activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,45 +9,6 @@
from .converter_utils import mark_as_int8_layer


def common_activation(
network, mod, input_val, activation_type, activation_dyn_range_fn, layer_name
):
layer = network.add_activation(input=input_val, type=activation_type)
layer.name = layer_name

if input_val.dynamic_range:
dyn_range = activation_dyn_range_fn(input_val.dynamic_range)
mark_as_int8_layer(layer, dyn_range)

return layer.get_output(0)


@tensorrt_converter(torch.nn.functional.relu)
@tensorrt_converter(torch.nn.modules.activation.ReLU)
def relu(network, submod, args, kwargs, layer_name):
# args/kwargs should have already been normalized to kwargs
assert len(args) == 0
input_val = kwargs["input"]

if not isinstance(input_val, trt.tensorrt.ITensor):
raise RuntimeError(
f"ReLU received input {input_val} that is not part "
"of the TensorRT region!"
)

def activation_dyn_range_fn(dyn_range):
return max(0, dyn_range[0]), max(0, dyn_range[1])

return common_activation(
network,
submod,
input_val,
trt.ActivationType.RELU,
activation_dyn_range_fn,
layer_name,
)


@tensorrt_converter(torch.nn.modules.activation.Sigmoid)
def sigmoid(network, submod, args, kwargs, layer_name):
# args/kwargs should have already been normalized to kwargs
Expand Down
13 changes: 9 additions & 4 deletions py/torch_tensorrt/fx/converters/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@

from .converter_utils import * # noqa: F403
import torch_tensorrt.fx.tracer.acc_tracer.acc_utils as acc_utils
from torch_tensorrt.fx.converters.impl import activation

_LOGGER: logging.Logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -290,10 +291,14 @@ def aten_ops_relu(
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
}
return acc_ops_converters.acc_ops_relu(network, target, None, kwargs_new, name)

return activation.relu(
network,
target,
SourceIR.ATEN,
name,
args[0],
)


@tensorrt_converter(torch.ops.aten.sub.Tensor)
Expand Down
77 changes: 33 additions & 44 deletions py/torch_tensorrt/fx/converters/converter_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import warnings
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union

from enum import Enum, auto
import numpy as np

# @manual=//deeplearning/trt/python:py_tensorrt
Expand All @@ -22,6 +23,26 @@
from ..utils import torch_dtype_from_trt


class SourceIR(Enum):
NN = auto()
ACC = auto()
ATEN = auto()
PRIM = auto()
UNKNOWN = auto()

def __str__(self):
if self == SourceIR.NN:
return "nn"
elif self == SourceIR.ACC:
return "acc"
elif self == SourceIR.ATEN:
return "aten"
elif self == SourceIR.PRIM:
return "prim"
else:
return "unknown_ir"


def get_trt_plugin(
plugin_name: str,
field_collection: List[TRTPluginFieldCollection],
Expand Down Expand Up @@ -77,7 +98,9 @@ def get_positive_dim(dim: int, dim_size: int) -> int:
return dim


def set_layer_name(layer: TRTLayer, target: Target, name: str) -> None:
def set_layer_name(
layer: TRTLayer, target: Target, name: str, source_ir: Optional[SourceIR] = None
) -> None:
"""
Set the TensorRT layer name to "[TensorRT Layer Type]_[Original Op Name]_[FX Node Name with Suffix]"
Expand All @@ -86,8 +109,16 @@ def set_layer_name(layer: TRTLayer, target: Target, name: str) -> None:
target (Target): A fx node.target. For call_function node, it's the function that
the node represents.
name (str): Consists of fx node.name with optional suffix.
source_ir: (Optional[SourceIR]): The IR producing the op.
"""
target_name = target if isinstance(target, str) else f"acc_ops.{target.__name__}"

source_ir = source_ir if source_ir is not None else SourceIR.UNKNOWN

target_name = (
f"{source_ir}_ops.{target}"
if isinstance(target, str)
else f"{source_ir}_ops.{target.__name__}"
)
layer.name = f"[{layer.type.name}]-[{target_name}]-[{name}]"


Expand Down Expand Up @@ -560,48 +591,6 @@ def add_unary_layer(
return layer.get_output(0)


def add_activation_layer(
network: TRTNetwork,
input_val: TRTTensor,
operation_type: trt.ActivationType,
target: Target,
name: str,
alpha: Optional[Any] = None,
beta: Optional[Any] = None,
) -> TRTTensor:
"""
Add a TensorRT Activation layer to `network`.
Args:
network (TRTNetwork): TensorRT network object.
input_val (TRTTensor): Input to the activation op.
Must be a TensorRT tensor.
op_type (trt.ElementWiseOperation): Type of the TensorRT activation
operation.
target (Target): Target of fx node.
name (str): The name we want to assign to the created TensorRT layer.
alpha (Optional[Any]): If not None, we will use it to set the alpha
attribute of the created TensorRT activation layer.
beta (Optional[Any]): If not None, we will use it to set the beta
attribute of the created TensorRT activation layer.
Returns:
The output of TensorRT Activation layer.
"""
if not isinstance(input_val, TRTTensor):
raise RuntimeError(
f"{operation_type} received input {input_val} that is not part "
"of the TensorRT region!"
)
layer = network.add_activation(input_val, operation_type)
if alpha is not None:
layer.alpha = alpha
if beta is not None:
layer.beta = beta
set_layer_name(layer, target, name)
return layer.get_output(0)


def add_reduce_layer(
network: TRTNetwork,
target: Target,
Expand Down
Empty file.
Loading

0 comments on commit 1696cd2

Please sign in to comment.