Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bpo-37128: Add math.perm(). #13731

Merged
merged 6 commits into from
Jun 2, 2019
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions Doc/library/math.rst
Original file line number Diff line number Diff line change
Expand Up @@ -207,6 +207,19 @@ Number-theoretic and representation functions
of *x* and are floats.


.. function:: perm(n, k)

Return the distinct number of ways to choose *k* items from *n* items
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"distinct number of ways" doesn't quite make sense. "number of distinct ways"? Or just lose the "distinct" word altogether.

without repetition and with order.

It is mathematically equal to the expression ``n! / (n - k)!``.

Raises :exc:`TypeError` if the arguments not integers.
Raises :exc:`ValueError` if the arguments are negative or if *k* > *n*.

.. versionadded:: 3.8


.. function:: prod(iterable, *, start=1)

Calculate the product of all the elements in the input *iterable*.
Expand Down
55 changes: 55 additions & 0 deletions Lib/test/test_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -1862,6 +1862,61 @@ def test_fractions(self):
self.assertAllClose(fraction_examples, rel_tol=1e-8)
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)

def testPerm(self):
perm = math.perm
factorial = math.factorial
# Test if factorial defintion is satisfied
for n in range(100):
for k in range(n + 1):
self.assertEqual(perm(n, k),
factorial(n) // factorial(n - k))

# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))

# Test corner cases
for n in range(1, 100):
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, n), factorial(n))

# Raises TypeError if any argument is non-integer or argument count is
# not 2
self.assertRaises(TypeError, perm, 10, 1.0)
self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0))
self.assertRaises(TypeError, perm, 10, "1")
self.assertRaises(TypeError, perm, 10.0, 1)
self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1)
self.assertRaises(TypeError, perm, "10", 1)

self.assertRaises(TypeError, perm, 10)
self.assertRaises(TypeError, perm, 10, 1, 3)
self.assertRaises(TypeError, perm)

# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, perm, -1, 1)
self.assertRaises(ValueError, perm, -2**1000, 1)
self.assertRaises(ValueError, perm, 1, -1)
self.assertRaises(ValueError, perm, 1, -2**1000)

# Raises value error if k is greater than n
self.assertRaises(ValueError, perm, 1, 2)
self.assertRaises(ValueError, perm, 1, 2**1000)

n = 2**1000
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, 2), n * (n-1))
self.assertRaises((OverflowError, MemoryError), perm, n, n)

for n, k in (True, True), (True, False), (False, False):
self.assertEqual(perm(n, k), 1)
self.assertIs(type(perm(n, k)), int)
self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
self.assertIs(type(perm(MyIndexable(5), MyIndexable(2))), int)

def testComb(self):
comb = math.comb
factorial = math.factorial
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Added :func:`math.perm`.
37 changes: 36 additions & 1 deletion Modules/clinic/mathmodule.c.h

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

130 changes: 129 additions & 1 deletion Modules/mathmodule.c
Original file line number Diff line number Diff line change
Expand Up @@ -2998,6 +2998,120 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
}


/*[clinic input]
math.perm

n: object
k: object
/

Number of ways to choose k items from n items without repetition and with order.

It is mathematically equal to the expression n! / (n - k)!.

Raises TypeError if the arguments are not integers.
Raises ValueError if the arguments are negative or if k > n.
[clinic start generated code]*/

static PyObject *
math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
/*[clinic end generated code: output=e021a25469653e23 input=f71ee4f6ff26be24]*/
{
PyObject *result = NULL, *factor = NULL;
int overflow, cmp;
long long i, factors;

n = PyNumber_Index(n);
if (n == NULL) {
return NULL;
}
if (!PyLong_CheckExact(n)) {
Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
if (n == NULL) {
return NULL;
}
}
k = PyNumber_Index(k);
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
if (!PyLong_CheckExact(k)) {
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
}

if (Py_SIZE(n) < 0) {
PyErr_SetString(PyExc_ValueError,
"n must be a non-negative integer");
goto error;
}
cmp = PyObject_RichCompareBool(n, k, Py_LT);
if (cmp != 0) {
if (cmp > 0) {
PyErr_SetString(PyExc_ValueError,
"k must be an integer less than or equal to n");
}
goto error;
}

factors = PyLong_AsLongLongAndOverflow(k, &overflow);
if (overflow > 0) {
PyErr_Format(PyExc_OverflowError,
"k must not exceed %lld",
LLONG_MAX);
goto error;
}
else if (overflow < 0 || factors < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_ValueError,
"k must be a non-negative integer");
}
goto error;
}

if (factors == 0) {
result = PyLong_FromLong(1);
goto done;
}

result = n;
Py_INCREF(result);
if (factors == 1) {
goto done;
}

factor = n;
Py_INCREF(factor);
for (i = 1; i < factors; ++i) {
Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
if (factor == NULL) {
goto error;
}
Py_SETREF(result, PyNumber_Multiply(result, factor));
if (result == NULL) {
goto error;
}
}
Py_DECREF(factor);

done:
Py_DECREF(n);
Py_DECREF(k);
return result;

error:
Py_XDECREF(factor);
Py_XDECREF(result);
Py_DECREF(n);
Py_DECREF(k);
return NULL;
}


/*[clinic input]
math.comb

Expand Down Expand Up @@ -3028,11 +3142,24 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
if (n == NULL) {
return NULL;
}
if (!PyLong_CheckExact(n)) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm looking forward to the day when we can remove this kind of block as unnecessary (perhaps in 3.9). I thought I'd persuaded myself that everything does eventually get converted to plain ints, but now that I look again it's not clear, and I agree that making this check up front is a good idea.

Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
if (n == NULL) {
return NULL;
}
}
k = PyNumber_Index(k);
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
if (!PyLong_CheckExact(k)) {
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
}

if (Py_SIZE(n) < 0) {
PyErr_SetString(PyExc_ValueError,
Expand All @@ -3050,7 +3177,7 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
"k must be an integer less than or equal to n");
goto error;
}
cmp = PyObject_RichCompareBool(k, temp, Py_GT);
cmp = PyObject_RichCompareBool(temp, k, Py_LT);
if (cmp > 0) {
Py_SETREF(k, temp);
}
Expand Down Expand Up @@ -3174,6 +3301,7 @@ static PyMethodDef math_methods[] = {
{"tanh", math_tanh, METH_O, math_tanh_doc},
MATH_TRUNC_METHODDEF
MATH_PROD_METHODDEF
MATH_PERM_METHODDEF
MATH_COMB_METHODDEF
{NULL, NULL} /* sentinel */
};
Expand Down