-
-
Notifications
You must be signed in to change notification settings - Fork 31.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
bpo-37128: Add math.perm(). #13731
bpo-37128: Add math.perm(). #13731
Changes from 2 commits
4511c7a
5b9aac0
b08983b
29cc250
a608508
a75d232
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Added :func:`math.perm`. |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2998,27 +2998,8 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start) | |
} | ||
|
||
|
||
/*[clinic input] | ||
math.comb | ||
n: object | ||
k: object | ||
/ | ||
Number of ways to choose k items from n items without repetition and without order. | ||
Also called the binomial coefficient. It is mathematically equal to the expression | ||
n! / (k! * (n - k)!). It is equivalent to the coefficient of k-th term in | ||
polynomial expansion of the expression (1 + x)**n. | ||
Raises TypeError if the arguments are not integers. | ||
Raises ValueError if the arguments are negative or if k > n. | ||
[clinic start generated code]*/ | ||
|
||
static PyObject * | ||
math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | ||
/*[clinic end generated code: output=bd2cec8d854f3493 input=2f336ac9ec8242f9]*/ | ||
perm_comb(PyObject *n, PyObject *k, int comb) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ISTM that combining the code for comb() and perm() doesn't save us much. I would rather they be decoupled at outset so as to not preclude possible optimizations (there are a number of ways to compute combinations that do early cancellation to keep the intermediate products from exploding in size). |
||
{ | ||
PyObject *result = NULL, *factor = NULL, *temp; | ||
int overflow, cmp; | ||
|
@@ -3028,43 +3009,69 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | |
if (n == NULL) { | ||
return NULL; | ||
} | ||
if (!PyLong_CheckExact(n)) { | ||
Py_SETREF(n, _PyLong_Copy((PyLongObject *)n)); | ||
if (n == NULL) { | ||
return NULL; | ||
} | ||
} | ||
k = PyNumber_Index(k); | ||
if (k == NULL) { | ||
Py_DECREF(n); | ||
return NULL; | ||
} | ||
if (!PyLong_CheckExact(k)) { | ||
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k)); | ||
if (k == NULL) { | ||
Py_DECREF(n); | ||
return NULL; | ||
} | ||
} | ||
|
||
if (Py_SIZE(n) < 0) { | ||
PyErr_SetString(PyExc_ValueError, | ||
"n must be a non-negative integer"); | ||
goto error; | ||
} | ||
/* k = min(k, n - k) */ | ||
temp = PyNumber_Subtract(n, k); | ||
if (temp == NULL) { | ||
goto error; | ||
} | ||
if (Py_SIZE(temp) < 0) { | ||
Py_DECREF(temp); | ||
PyErr_SetString(PyExc_ValueError, | ||
"k must be an integer less than or equal to n"); | ||
goto error; | ||
} | ||
cmp = PyObject_RichCompareBool(k, temp, Py_GT); | ||
if (cmp > 0) { | ||
Py_SETREF(k, temp); | ||
if (comb) { | ||
/* k = min(k, n - k) */ | ||
temp = PyNumber_Subtract(n, k); | ||
if (temp == NULL) { | ||
goto error; | ||
} | ||
if (Py_SIZE(temp) < 0) { | ||
Py_DECREF(temp); | ||
PyErr_SetString(PyExc_ValueError, | ||
"k must be an integer less than or equal to n"); | ||
goto error; | ||
} | ||
cmp = PyObject_RichCompareBool(temp, k, Py_LT); | ||
if (cmp > 0) { | ||
Py_SETREF(k, temp); | ||
} | ||
else { | ||
Py_DECREF(temp); | ||
if (cmp < 0) { | ||
goto error; | ||
} | ||
} | ||
} | ||
else { | ||
Py_DECREF(temp); | ||
if (cmp < 0) { | ||
cmp = PyObject_RichCompareBool(n, k, Py_LT); | ||
if (cmp != 0) { | ||
if (cmp > 0) { | ||
PyErr_SetString(PyExc_ValueError, | ||
"k must be an integer less than or equal to n"); | ||
} | ||
goto error; | ||
} | ||
} | ||
|
||
factors = PyLong_AsLongLongAndOverflow(k, &overflow); | ||
if (overflow > 0) { | ||
PyErr_Format(PyExc_OverflowError, | ||
"min(n - k, k) must not exceed %lld", | ||
"%s must not exceed %lld", | ||
comb ? "min(n - k, k)" : "k", | ||
LLONG_MAX); | ||
goto error; | ||
} | ||
|
@@ -3099,14 +3106,16 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | |
goto error; | ||
} | ||
|
||
temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1); | ||
if (temp == NULL) { | ||
goto error; | ||
} | ||
Py_SETREF(result, PyNumber_FloorDivide(result, temp)); | ||
Py_DECREF(temp); | ||
if (result == NULL) { | ||
goto error; | ||
if (comb) { | ||
temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1); | ||
if (temp == NULL) { | ||
goto error; | ||
} | ||
Py_SETREF(result, PyNumber_FloorDivide(result, temp)); | ||
Py_DECREF(temp); | ||
if (result == NULL) { | ||
goto error; | ||
} | ||
} | ||
} | ||
Py_DECREF(factor); | ||
|
@@ -3125,6 +3134,55 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | |
} | ||
|
||
|
||
/*[clinic input] | ||
math.perm | ||
n: object | ||
k: object | ||
/ | ||
Number of ways to choose k items from n items without repetition. | ||
It is mathematically equal to the expression n! / (n - k)!. | ||
Raises TypeError if the arguments are not integers. | ||
Raises ValueError if the arguments are negative or if k > n. | ||
[clinic start generated code]*/ | ||
|
||
static PyObject * | ||
math_perm_impl(PyObject *module, PyObject *n, PyObject *k) | ||
/*[clinic end generated code: output=e021a25469653e23 input=bad86be85158ebfd]*/ | ||
{ | ||
return perm_comb(n, k, 0); | ||
} | ||
|
||
|
||
/*[clinic input] | ||
math.comb | ||
n: object | ||
k: object | ||
/ | ||
Number of ways to choose k items from n items without repetition and without order. | ||
Also called the binomial coefficient. It is mathematically equal to the expression | ||
n! / (k! * (n - k)!). It is equivalent to the coefficient of k-th term in | ||
polynomial expansion of the expression (1 + x)**n. | ||
Raises TypeError if the arguments are not integers. | ||
Raises ValueError if the arguments are negative or if k > n. | ||
[clinic start generated code]*/ | ||
|
||
static PyObject * | ||
math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | ||
/*[clinic end generated code: output=bd2cec8d854f3493 input=2f336ac9ec8242f9]*/ | ||
{ | ||
return perm_comb(n, k, 1); | ||
} | ||
|
||
|
||
static PyMethodDef math_methods[] = { | ||
{"acos", math_acos, METH_O, math_acos_doc}, | ||
{"acosh", math_acosh, METH_O, math_acosh_doc}, | ||
|
@@ -3174,6 +3232,7 @@ static PyMethodDef math_methods[] = { | |
{"tanh", math_tanh, METH_O, math_tanh_doc}, | ||
MATH_TRUNC_METHODDEF | ||
MATH_PROD_METHODDEF | ||
MATH_PERM_METHODDEF | ||
MATH_COMB_METHODDEF | ||
{NULL, NULL} /* sentinel */ | ||
}; | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The "with order" part should be mentioned. Perhaps
s/the number/the distinct number/
.FWIW, here is the wording from the itertools docs: