Skip to content

Commit

Permalink
gh-91351: Fix some bugs in importlib handling of re-entrant imports (G…
Browse files Browse the repository at this point in the history
…H-94504)

Co-authored-by: Brett Cannon <brett@python.org>
  • Loading branch information
exarkun and brettcannon committed Jan 21, 2023
1 parent 6b3993c commit 3325f05
Show file tree
Hide file tree
Showing 2 changed files with 201 additions and 37 deletions.
233 changes: 196 additions & 37 deletions Lib/importlib/_bootstrap.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,48 +54,164 @@ def _new_module(name):
# A dict mapping module names to weakrefs of _ModuleLock instances
# Dictionary protected by the global import lock
_module_locks = {}
# A dict mapping thread ids to _ModuleLock instances

# A dict mapping thread IDs to lists of _ModuleLock instances. This maps a
# thread to the module locks it is blocking on acquiring. The values are
# lists because a single thread could perform a re-entrant import and be "in
# the process" of blocking on locks for more than one module. A thread can
# be "in the process" because a thread cannot actually block on acquiring
# more than one lock but it can have set up bookkeeping that reflects that
# it intends to block on acquiring more than one lock.
_blocking_on = {}


class _BlockingOnManager:
"""A context manager responsible to updating ``_blocking_on``."""
def __init__(self, thread_id, lock):
self.thread_id = thread_id
self.lock = lock

def __enter__(self):
"""Mark the running thread as waiting for self.lock. via _blocking_on."""
# Interactions with _blocking_on are *not* protected by the global
# import lock here because each thread only touches the state that it
# owns (state keyed on its thread id). The global import lock is
# re-entrant (i.e., a single thread may take it more than once) so it
# wouldn't help us be correct in the face of re-entrancy either.

self.blocked_on = _blocking_on.setdefault(self.thread_id, [])
self.blocked_on.append(self.lock)

def __exit__(self, *args, **kwargs):
"""Remove self.lock from this thread's _blocking_on list."""
self.blocked_on.remove(self.lock)


class _DeadlockError(RuntimeError):
pass



def _has_deadlocked(target_id, *, seen_ids, candidate_ids, blocking_on):
"""Check if 'target_id' is holding the same lock as another thread(s).
The search within 'blocking_on' starts with the threads listed in
'candidate_ids'. 'seen_ids' contains any threads that are considered
already traversed in the search.
Keyword arguments:
target_id -- The thread id to try to reach.
seen_ids -- A set of threads that have already been visited.
candidate_ids -- The thread ids from which to begin.
blocking_on -- A dict representing the thread/blocking-on graph. This may
be the same object as the global '_blocking_on' but it is
a parameter to reduce the impact that global mutable
state has on the result of this function.
"""
if target_id in candidate_ids:
# If we have already reached the target_id, we're done - signal that it
# is reachable.
return True

# Otherwise, try to reach the target_id from each of the given candidate_ids.
for tid in candidate_ids:
if not (candidate_blocking_on := blocking_on.get(tid)):
# There are no edges out from this node, skip it.
continue
elif tid in seen_ids:
# bpo 38091: the chain of tid's we encounter here eventually leads
# to a fixed point or a cycle, but does not reach target_id.
# This means we would not actually deadlock. This can happen if
# other threads are at the beginning of acquire() below.
return False
seen_ids.add(tid)

# Follow the edges out from this thread.
edges = [lock.owner for lock in candidate_blocking_on]
if _has_deadlocked(target_id, seen_ids=seen_ids, candidate_ids=edges,
blocking_on=blocking_on):
return True

return False


class _ModuleLock:
"""A recursive lock implementation which is able to detect deadlocks
(e.g. thread 1 trying to take locks A then B, and thread 2 trying to
take locks B then A).
"""

def __init__(self, name):
self.lock = _thread.allocate_lock()
# Create an RLock for protecting the import process for the
# corresponding module. Since it is an RLock, a single thread will be
# able to take it more than once. This is necessary to support
# re-entrancy in the import system that arises from (at least) signal
# handlers and the garbage collector. Consider the case of:
#
# import foo
# -> ...
# -> importlib._bootstrap._ModuleLock.acquire
# -> ...
# -> <garbage collector>
# -> __del__
# -> import foo
# -> ...
# -> importlib._bootstrap._ModuleLock.acquire
# -> _BlockingOnManager.__enter__
#
# If a different thread than the running one holds the lock then the
# thread will have to block on taking the lock, which is what we want
# for thread safety.
self.lock = _thread.RLock()
self.wakeup = _thread.allocate_lock()

# The name of the module for which this is a lock.
self.name = name

# Can end up being set to None if this lock is not owned by any thread
# or the thread identifier for the owning thread.
self.owner = None
self.count = 0
self.waiters = 0

# Represent the number of times the owning thread has acquired this lock
# via a list of True. This supports RLock-like ("re-entrant lock")
# behavior, necessary in case a single thread is following a circular
# import dependency and needs to take the lock for a single module
# more than once.
#
# Counts are represented as a list of True because list.append(True)
# and list.pop() are both atomic and thread-safe in CPython and it's hard
# to find another primitive with the same properties.
self.count = []

# This is a count of the number of threads that are blocking on
# self.wakeup.acquire() awaiting to get their turn holding this module
# lock. When the module lock is released, if this is greater than
# zero, it is decremented and `self.wakeup` is released one time. The
# intent is that this will let one other thread make more progress on
# acquiring this module lock. This repeats until all the threads have
# gotten a turn.
#
# This is incremented in self.acquire() when a thread notices it is
# going to have to wait for another thread to finish.
#
# See the comment above count for explanation of the representation.
self.waiters = []

def has_deadlock(self):
# Deadlock avoidance for concurrent circular imports.
me = _thread.get_ident()
tid = self.owner
seen = set()
while True:
lock = _blocking_on.get(tid)
if lock is None:
return False
tid = lock.owner
if tid == me:
return True
if tid in seen:
# bpo 38091: the chain of tid's we encounter here
# eventually leads to a fixpoint or a cycle, but
# does not reach 'me'. This means we would not
# actually deadlock. This can happen if other
# threads are at the beginning of acquire() below.
return False
seen.add(tid)
# To avoid deadlocks for concurrent or re-entrant circular imports,
# look at _blocking_on to see if any threads are blocking
# on getting the import lock for any module for which the import lock
# is held by this thread.
return _has_deadlocked(
# Try to find this thread.
target_id=_thread.get_ident(),
seen_ids=set(),
# Start from the thread that holds the import lock for this
# module.
candidate_ids=[self.owner],
# Use the global "blocking on" state.
blocking_on=_blocking_on,
)

def acquire(self):
"""
Expand All @@ -104,35 +220,78 @@ def acquire(self):
Otherwise, the lock is always acquired and True is returned.
"""
tid = _thread.get_ident()
_blocking_on[tid] = self
try:
with _BlockingOnManager(tid, self):
while True:
# Protect interaction with state on self with a per-module
# lock. This makes it safe for more than one thread to try to
# acquire the lock for a single module at the same time.
with self.lock:
if self.count == 0 or self.owner == tid:
if self.count == [] or self.owner == tid:
# If the lock for this module is unowned then we can
# take the lock immediately and succeed. If the lock
# for this module is owned by the running thread then
# we can also allow the acquire to succeed. This
# supports circular imports (thread T imports module A
# which imports module B which imports module A).
self.owner = tid
self.count += 1
self.count.append(True)
return True

# At this point we know the lock is held (because count !=
# 0) by another thread (because owner != tid). We'll have
# to get in line to take the module lock.

# But first, check to see if this thread would create a
# deadlock by acquiring this module lock. If it would
# then just stop with an error.
#
# It's not clear who is expected to handle this error.
# There is one handler in _lock_unlock_module but many
# times this method is called when entering the context
# manager _ModuleLockManager instead - so _DeadlockError
# will just propagate up to application code.
#
# This seems to be more than just a hypothetical -
# https://stackoverflow.com/questions/59509154
# https://github.com/encode/django-rest-framework/issues/7078
if self.has_deadlock():
raise _DeadlockError('deadlock detected by %r' % self)
raise _DeadlockError(f'deadlock detected by {self!r}')

# Check to see if we're going to be able to acquire the
# lock. If we are going to have to wait then increment
# the waiters so `self.release` will know to unblock us
# later on. We do this part non-blockingly so we don't
# get stuck here before we increment waiters. We have
# this extra acquire call (in addition to the one below,
# outside the self.lock context manager) to make sure
# self.wakeup is held when the next acquire is called (so
# we block). This is probably needlessly complex and we
# should just take self.wakeup in the return codepath
# above.
if self.wakeup.acquire(False):
self.waiters += 1
# Wait for a release() call
self.waiters.append(None)

# Now take the lock in a blocking fashion. This won't
# complete until the thread holding this lock
# (self.owner) calls self.release.
self.wakeup.acquire()

# Taking the lock has served its purpose (making us wait), so we can
# give it up now. We'll take it w/o blocking again on the
# next iteration around this 'while' loop.
self.wakeup.release()
finally:
del _blocking_on[tid]

def release(self):
tid = _thread.get_ident()
with self.lock:
if self.owner != tid:
raise RuntimeError('cannot release un-acquired lock')
assert self.count > 0
self.count -= 1
if self.count == 0:
assert len(self.count) > 0
self.count.pop()
if not len(self.count):
self.owner = None
if self.waiters:
self.waiters -= 1
if len(self.waiters) > 0:
self.waiters.pop()
self.wakeup.release()

def __repr__(self):
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
Fix a case where re-entrant imports could corrupt the import deadlock
detection code and cause a :exc:`KeyError` to be raised out of
:mod:`importlib/_bootstrap`. In addition to the straightforward cases, this
could also happen when garbage collection leads to a warning being emitted --
as happens when it collects an open socket or file)

0 comments on commit 3325f05

Please sign in to comment.