Python ffmpegio package aims to bring the full capability of FFmpeg to read, write, probe, and manipulate multimedia data to Python. FFmpeg is an open-source cross-platform multimedia framework, which can handle most of the multimedia formats available today.
- Pure-Python light-weight package interacting with FFmpeg executable found in your system
- Read, write, filter, and create functions for audio, image, and video data
- Context-managing ffmpegio.open to perform stream read/write operations of video and audio
- Media readers can output the data in a Numpy array (if Numpy is installed) or a plain
bytes
objects in adict
. The mode of operation can be switched withffmpegio.use
function. - Media writers can write a new media file from either data given in a Numpy array or
bytes
objects in adict
. - Write Matplotlib figures to images or to a video (a simpler interface than Matplotlib's Animation writers).
- Probe media file information
- Accepts all FFmpeg options including filter graphs
- Transcode a media file to another in Python
- Supports a user callback whenever FFmpeg updates its progress information file (see -progress FFmpeg option)
- ffconcat scripter to make the use of -f concat demuxer easier
- I/O device enumeration to eliminate the need to look up device names. (currently supports only: Windows DirectShow)
- More features to follow
Install the full ffmpegio package via pip
:
pip install ffmpegio
Following optional external packages are required to enable the ffmpegio
features that interact
with them.
Distro package name | ffmpegio features |
Deprecated plugin names |
---|---|---|
numpy |
Support Numpy array inputs and outputs intead of bytes | ffmpegio |
matplotlib |
Support generation of images or videos from Matplotlib figure | ffmpegio-plugin-mpl |
ffmepeg-downloader |
Support the FFmpeg binaries installed by the ffdl command |
ffmpegio-plugin-downloader |
static-ffmpeg |
Support the FFmpeg binaries installed by static-ffmpeg |
ffmpegio-plugin-static-ffmpeg |
These features are automatically enabled if the external packages are installed along along side with ffmpegio.
ffmpegio
is imported
Note
Prior to v0.11.0, these features were only enabled via installing separate plugin packages (listed in the table above).
ffmpegio
v0.11 and ffmpegio-core
v0.11 are identical, and ffmpegio-core
will no longer receive
the updates. For the version upgrade instruction, please read this Wiki entry <https://github.com/python-ffmpegio/python-ffmpegio/wiki/Instructions-to-upgrade-to-v0.11.0>`__
Visit our GitHub page here
To import ffmpegio
>>> import ffmpegio
- Transcoding
- Read Audio Files
- Read Image Files / Capture Video Frames
- Read Video Files
- Read Multiple Files or Streams
- Write Audio, Image, & Video Files
- Filter Audio, Image, & Video Data
- Stream I/O
- Video from Matplotlib Figure
- Device I/O Enumeration
- Progress Callback
- Filtergraph Builder
- Run FFmpeg and FFprobe Directly
>>> # transcode, overwrite output file if exists, showing the FFmpeg log
>>> ffmpegio.transcode('input.avi', 'output.mp4', overwrite=True, show_log=True)
>>> # 1-pass H.264 transcoding
>>> ffmpegio.transcode('input.avi', 'output.mkv', vcodec='libx264', show_log=True,
>>> preset='slow', crf=22, acodec='copy')
>>> # 2-pass H.264 transcoding
>>> ffmpegio.transcode('input.avi', 'output.mkv', two_pass=True, show_log=True,
>>> **{'c:v':'libx264', 'b:v':'2600k', 'c:a':'aac', 'b:a':'128k'})
>>> # concatenate videos using concat demuxer
>>> files = ['/video/video1.mkv','/video/video2.mkv']
>>> ffconcat = ffmpegio.FFConcat()
>>> ffconcat.add_files(files)
>>> with ffconcat: # generates temporary ffconcat file
>>> ffmpegio.transcode(ffconcat, 'output.mkv', f_in='concat', codec='copy', safe_in=0)
>>> # read audio samples in its native sample format and return all channels
>>> fs, x = ffmpegio.audio.read('myaudio.wav')
>>> # fs: sampling rate in samples/second, x: [nsamples x nchannels] numpy array
>>> # read audio samples from 24.15 seconds to 63.2 seconds, pre-convert to mono in float data type
>>> fs, x = ffmpegio.audio.read('myaudio.flac', ss=24.15, to=63.2, sample_fmt='dbl', ac=1)
>>> # read filtered audio samples first 10 seconds
>>> # filter: equalizer which attenuate 10 dB at 1 kHz with a bandwidth of 200 Hz
>>> fs, x = ffmpegio.audio.read('myaudio.mp3', t=10.0, af='equalizer=f=1000:t=h:width=200:g=-10')
>>> # list supported image extensions
>>> ffmpegio.caps.muxer_info('image2')['extensions']
['bmp', 'dpx', 'exr', 'jls', 'jpeg', 'jpg', 'ljpg', 'pam', 'pbm', 'pcx', 'pfm', 'pgm', 'pgmyuv',
'png', 'ppm', 'sgi', 'tga', 'tif', 'tiff', 'jp2', 'j2c', 'j2k', 'xwd', 'sun', 'ras', 'rs', 'im1',
'im8', 'im24', 'sunras', 'xbm', 'xface', 'pix', 'y']
>>> # read BMP image with auto-detected pixel format (rgb24, gray, rgba, or ya8)
>>> I = ffmpegio.image.read('myimage.bmp') # I: [height x width x ncomp] numpy array
>>> # read JPEG image, then convert to grayscale and proportionally scale so the width is 480 pixels
>>> I = ffmpegio.image.read('myimage.jpg', pix_fmt='grayscale', s='480x-1')
>>> # read PNG image with transparency, convert it to plain RGB by filling transparent pixels orange
>>> I = ffmpegio.image.read('myimage.png', pix_fmt='rgb24', fill_color='orange')
>>> # capture video frame at timestamp=4:25.3 and convert non-square pixels to square
>>> I = ffmpegio.image.read('myvideo.mpg', ss='4:25.3', square_pixels='upscale')
>>> # capture 5 video frames and tile them on 3x2 grid with 7px between them, and 2px of initial margin
>>> I = ffmpegio.image.read('myvideo.mp4', vf='tile=3x2:nb_frames=5:padding=7:margin=2')
>>> # create spectrogram of the audio input (must specify pix_fmt if input is audio)
>>> I = ffmpegio.image.read('myaudio.mp3', filter_complex='showspectrumpic=s=960x540', pix_fmt='rgb24')
>>> # read 50 video frames at t=00:32:40 then convert to grayscale
>>> fs, F = ffmpegio.video.read('myvideo.mp4', ss='00:32:40', vframes=50, pix_fmt='gray')
>>> # fs: frame rate in frames/second, F: [nframes x height x width x ncomp] numpy array
>>> # get running spectrogram of audio input (must specify pix_fmt if input is audio)
>>> fs, F = ffmpegio.video.read('myvideo.mp4', pix_fmt='rgb24', filter_complex='showspectrum=s=1280x480')
>>> # read both video and audio streams (1 ea)
>>> rates, data = ffmpegio.media.read('mymedia.mp4')
>>> # rates: dict of frame rate and sampling rate: keys="v:0" and "a:0"
>>> # data: dict of video frame array and audio sample array: keys="v:0" and "a:0"
>>> # combine video and audio files
>>> rates, data = ffmpegio.media.read('myvideo.mp4','myaudio.mp3')
>>> # get output of complex filtergraph (can take multiple inputs)
>>> expr = "[v:0]split=2[out0][l1];[l1]edgedetect[out1]"
>>> rates, data = ffmpegio.media.read('myvideo.mp4',filter_complex=expr,map=['[out0]','[out1]'])
>>> # rates: dict of frame rates: keys="v:0" and "v:1"
>>> # data: dict of video frame arrays: keys="v:0" and "v:1"
>>> # create a video file from a numpy array
>>> ffmpegio.video.write('myvideo.mp4', rate, F)
>>> # create an image file from a numpy array
>>> ffmpegio.image.write('myimage.png', F)
>>> # create an audio file from a numpy array
>>> ffmpegio.audio.write('myaudio.mp3', rate, x)
>>> # Add fade-in and fade-out effects to audio data
>>> fs_out, y = ffmpegio.audio.filter('afade=t=in:ss=0:d=15,afade=t=out:st=875:d=25', fs_in, x)
>>> # Apply mirror effect to an image
>>> I_out = ffmpegio.image.filter('crop=iw/2:ih:0:0,split[left][tmp];[tmp]hflip[right];[left][right] hstack', I_in)
>>> # Add text at the center of the video frame
>>> filter = "drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h)/2"
>>> fs_out, F_out = ffmpegio.video.filter(filter, fs_in, F_in)
>>> # process video 100 frames at a time and save output as a new video
>>> # with the same frame rate
>>> with ffmpegio.open('myvideo.mp4', 'rv', blocksize=100) as fin,
>>> ffmpegio.open('myoutput.mp4', 'wv', rate=fin.rate) as fout:
>>> for frames in fin:
>>> fout.write(myprocess(frames))
To enable this feature, you must also install matplotlib
:
pip install matplotlib
>>> # process video 100 frames at a time and save output as a new video
>>> # with the same frame rate
>>> import ffmpegio
>>> from matplotlib import pyplot as plt
>>> import numpy as np
>>>
>>> fig, ax = plt.subplots()
>>>
>>> x = np.arange(0, 2*np.pi, 0.01)
>>> line, = ax.plot(x, np.sin(x))
>>>
>>> interval=20 # delay in milliseconds
>>> save_count=50 # number of frames
>>>
>>> def animate(i):
>>> line.set_ydata(np.sin(x + i / 50)) # update the data.
>>> return line
>>>
>>> with ffmpegio.open(
>>> "output.mp4", # output file name
>>> "wv", # open file in write-video mode
>>> 1e3/interval, # framerate in frames/second
>>> pix_fmt="yuv420p", # specify the pixel format (default is yuv444p)
>>> ) as f:
>>> for n in range(save_count):
>>> animate(n) # update figure
>>> f.write(fig) # write new frame
>>> # build complex filtergraph
>>> from ffmpegio import filtergraph as fgb
>>>
>>> v0 = "[0]" >> fgb.trim(start_frame=10, end_frame=20)
>>> v1 = "[0]" >> fgb.trim(start_frame=30, end_frame=40)
>>> v3 = "[1]" >> fgb.hflip()
>>> v2 = (v0 | v1) + fgb.concat(2)
>>> v5 = (v2|v3) + fgb.overlay(eof_action='repeat') + fgb.drawbox(50, 50, 120, 120, 'red', t=5)
>>> v5
<ffmpegio.filtergraph.Graph.Graph object at 0x2a4ef084bd0>
FFmpeg expression: "[0]trim=start_frame=10:end_frame=20[L0];[0]trim=start_frame=30:end_frame=40[L1];[L0][L1]concat=2[L2];[1]hflip[L3];[L2][L3]overlay=eof_action=repeat,drawbox=50:50:120:120:red:t=5"
Number of chains: 5
chain[0]: [0]trim=start_frame=10:end_frame=20[L0];
chain[1]: [0]trim=start_frame=30:end_frame=40[L1];
chain[2]: [L0][L1]concat=2[L2];
chain[3]: [1]hflip[L3];
chain[4]: [L2][L3]overlay=eof_action=repeat,drawbox=50:50:120:120:red:t=5[UNC0]
Available input pads (0):
Available output pads: (1): (4, 1, 0)
>>> # record 5 minutes of audio from Windows microphone
>>> fs, x = ffmpegio.audio.read('a:0', f_in='dshow', sample_fmt='dbl', t=300)
>>> # capture Windows' webcam frame
>>> with ffmpegio.open('v:0', 'rv', f_in='dshow') as webcam,
>>> for frame in webcam:
>>> process_frame(frame)
>>> import pprint
>>> # progress callback
>>> def progress(info, done):
>>> pprint(info) # bunch of stats
>>> if done:
>>> print('video decoding completed')
>>> else:
>>> return check_cancel_command(): # return True to kill immediately
>>> # can be used in any butch processing
>>> rate, F = ffmpegio.video.read('myvideo.mp4', progress=progress)
>>> # as well as for stream processing
>>> with ffmpegio.open('myvideo.mp4', 'rv', blocksize=100, progress=progress) as fin:
>>> for frames in fin:
>>> myprocess(frames)
>>> from ffmpegio import ffmpeg, FFprobe, ffmpegprocess
>>> from subprocess import PIPE
>>> # call with options as a long string
>>> ffmpeg('-i input.avi -b:v 64k -bufsize 64k output.avi')
>>> # or call with list of options
>>> ffmpeg(['-i', 'input.avi' ,'-r', '24', 'output.avi'])
>>> # the same for ffprobe
>>> ffprobe('ffprobe -show_streams -select_streams a INPUT')
>>> # specify subprocess arguments to capture stdout
>>> out = ffprobe('ffprobe -of json -show_frames INPUT',
stdout=PIPE, universal_newlines=True).stdout
>>> # use ffmpegprocess to take advantage of ffmpegio's default behaviors
>>> out = ffmpegprocess.run({"inputs": [("input.avi", None)],
"outputs": [("out1.mp4", None),
("-", {"f": "rawvideo", "vframes": 1, "pix_fmt": "gray", "an": None})
}, capture_log=True)
>>> print(out.stderr) # print the captured FFmpeg logs (banner text omitted)
>>> b = out.stdout # width*height bytes of the first frame