Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

#961 fix interpolant ids #962

Merged
merged 2 commits into from
Apr 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

## Bug fixes

- Fixed `Interpolant` ids to allow processing ([#962](https://github.com/pybamm-team/PyBaMM/pull/962)
- Changed simulation attributes to assign copies rather than the objects themselves ([#952](https://github.com/pybamm-team/PyBaMM/pull/952)
- Added default values to base model so that it works with the `Simulation` class ([#952](https://github.com/pybamm-team/PyBaMM/pull/952)
- Fixed solver to recompute initial conditions when inputs are changed ([#951](https://github.com/pybamm-team/PyBaMM/pull/951)
Expand Down
35 changes: 32 additions & 3 deletions pybamm/expression_tree/interpolant.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,13 @@ class Interpolant(pybamm.Function):
"""

def __init__(
self, data, child, name=None, interpolator="cubic spline", extrapolate=True
self,
data,
child,
name=None,
interpolator="cubic spline",
extrapolate=True,
entries_string=None,
):
if data.ndim != 2 or data.shape[1] != 2:
raise ValueError(
Expand All @@ -56,22 +62,45 @@ def __init__(
name = "interpolating function ({})".format(name)
else:
name = "interpolating function"
self.data = data
self.entries_string = entries_string
super().__init__(
interpolating_function, child, name=name, derivative="derivative"
)
# Store information as attributes
self.data = data
self.x = data[:, 0]
self.y = data[:, 1]
self.interpolator = interpolator
self.extrapolate = extrapolate

@property
def entries_string(self):
return self._entries_string

@entries_string.setter
def entries_string(self, value):
# We must include the entries in the hash, since different arrays can be
# indistinguishable by class, name and domain alone
# Slightly different syntax for sparse and non-sparse matrices
if value is not None:
self._entries_string = value
else:
entries = self.data
self._entries_string = entries.tostring()

def set_id(self):
""" See :meth:`pybamm.Symbol.set_id()`. """
self._id = hash(
(self.__class__, self.name, self.entries_string) + tuple(self.domain)
)

def _function_new_copy(self, children):
""" See :meth:`Function._function_new_copy()` """
return pybamm.Interpolant(
self.data,
*children,
name=self.name,
interpolator=self.interpolator,
extrapolate=self.extrapolate
extrapolate=self.extrapolate,
entries_string=self.entries_string
)
14 changes: 12 additions & 2 deletions tests/unit/test_parameters/test_parameter_values.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,11 +331,11 @@ def test_process_interpolant(self):
x = np.linspace(0, 10)[:, np.newaxis]
data = np.hstack([x, 2 * x])
parameter_values = pybamm.ParameterValues(
{"a": 3.01, "Diffusivity": ("times two", data)}
{"a": 3.01, "Times two": ("times two", data)}
)

a = pybamm.Parameter("a")
func = pybamm.FunctionParameter("Diffusivity", {"a": a})
func = pybamm.FunctionParameter("Times two", {"a": a})

processed_func = parameter_values.process_symbol(func)
self.assertIsInstance(processed_func, pybamm.Interpolant)
Expand All @@ -346,6 +346,16 @@ def test_process_interpolant(self):
processed_diff_func = parameter_values.process_symbol(diff_func)
self.assertEqual(processed_diff_func.evaluate(), 2)

# interpolant defined up front
interp2 = pybamm.Interpolant(data, a)
processed_interp2 = parameter_values.process_symbol(interp2)
self.assertEqual(processed_interp2.evaluate(), 6.02)

data3 = np.hstack([x, 3 * x])
interp3 = pybamm.Interpolant(data3, a)
processed_interp3 = parameter_values.process_symbol(interp3)
self.assertEqual(processed_interp3.evaluate(), 9.03)

def test_interpolant_against_function(self):
parameter_values = pybamm.ParameterValues({})
parameter_values.update(
Expand Down