Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updated to work with Python 3.10, Pytorch 2.0.1 and Cuda 11.7 #77

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ If you have any questions, please let us know:

## Instructions
This code has been tested on
- Python 3.8.5, PyTorch 1.7.1, CUDA 11.2, gcc 9.3.0, GeForce RTX 3090/GeForce GTX 1080Ti
- Python 3.10, PyTorch 2.0.1, CUDA 11.7, gcc 9.3.0, GeForce RTX 3090/GeForce GTX 1080Ti

**Note**: We observe random data loader crashes due to memory issues, if you observe similar issues, please consider reducing the number of workers or increasing CPU RAM. We now released a sparse convolution-based Predator, have a look [here](https://github.com/ShengyuH/OverlapPredator.Mink.git)!

Expand Down
160 changes: 87 additions & 73 deletions lib/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,11 @@
"""

import numpy as np
import os,sys,glob,torch,math
import os, sys, glob, torch, math
from collections import defaultdict
import nibabel.quaternions as nq


def rotation_error(R1, R2):
"""
Torch batch implementation of the rotation error between the estimated and the ground truth rotatiom matrix.
Expand All @@ -23,7 +24,7 @@ def rotation_error(R1, R2):
ae (torch tensor): Rotation error in angular degreees [b,1]

"""
R_ = torch.matmul(R1.transpose(1,2), R2)
R_ = torch.matmul(R1.transpose(1, 2), R2)
e = torch.stack([(torch.trace(R_[_, :, :]) - 1) / 2 for _ in range(R_.shape[0])], dim=0).unsqueeze(1)

# Clamp the errors to the valid range (otherwise torch.acos() is nan)
Expand All @@ -49,7 +50,8 @@ def translation_error(t1, t2):
te (torch tensor): translation error in meters [b,1]

"""
return torch.norm(t1-t2, dim=(1, 2))
return torch.norm(t1 - t2, dim=(1, 2))


def computeTransformationErr(trans, info):
"""
Expand All @@ -63,15 +65,16 @@ def computeTransformationErr(trans, info):
Returns:
p (float): transformation error
"""

t = trans[:3, 3]
r = trans[:3, :3]
q = nq.mat2quat(r)
er = np.concatenate([t, q[1:]], axis=0)
p = er.reshape(1, 6) @ info @ er.reshape(6, 1) / info[0, 0]

return p.item()


def read_trajectory(filename, dim=4):
"""
Function that reads a trajectory saved in the 3DMatch/Redwood format to a numpy array.
Expand All @@ -90,7 +93,7 @@ def read_trajectory(filename, dim=4):
lines = f.readlines()

# Extract the point cloud pairs
keys = lines[0::(dim+1)]
keys = lines[0::(dim + 1)]
temp_keys = []
for i in range(len(keys)):
temp_keys.append(keys[i].split('\t')[0:3])
Expand All @@ -99,14 +102,13 @@ def read_trajectory(filename, dim=4):
for i in range(len(temp_keys)):
final_keys.append([temp_keys[i][0].strip(), temp_keys[i][1].strip(), temp_keys[i][2].strip()])


traj = []
for i in range(len(lines)):
if i % 5 != 0:
traj.append(lines[i].split('\t')[0:dim])

traj = np.asarray(traj, dtype=np.float).reshape(-1,dim,dim)
traj = np.asarray(traj, dtype=float).reshape(-1, dim, dim)

final_keys = np.asarray(final_keys)

return final_keys, traj
Expand All @@ -115,16 +117,16 @@ def read_trajectory(filename, dim=4):
def read_trajectory_info(filename, dim=6):
"""
Function that reads the trajectory information saved in the 3DMatch/Redwood format to a numpy array.
Information file contains the variance-covariance matrix of the transformation paramaters.
Information file contains the variance-covariance matrix of the transformation paramaters.
Format specification can be found at http://redwood-data.org/indoor/fileformat.html

Args:
filename (str): path to the '.txt' file containing the trajectory information data
dim (int): dimension of the transformation matrix (4x4 for 3D data)

Returns:
n_frame (int): number of fragments in the scene
cov_matrix (numpy array): covariance matrix of the transformation matrices for n pairs[n,dim, dim]
cov_matrix (numpy array): covariance matrix of the transformation matrices for n pairs[n,dim, dim]
"""

with open(filename) as fid:
Expand All @@ -139,40 +141,42 @@ def read_trajectory_info(filename, dim=6):
info_matrix = np.concatenate(
[np.fromstring(item, sep='\t').reshape(1, -1) for item in contents[i * 7 + 1:i * 7 + 7]], axis=0)
info_list.append(info_matrix)
cov_matrix = np.asarray(info_list, dtype=np.float).reshape(-1,dim,dim)

cov_matrix = np.asarray(info_list, dtype=float).reshape(-1, dim, dim)

return n_frame, cov_matrix

def extract_corresponding_trajectors(est_pairs,gt_pairs, gt_traj):

def extract_corresponding_trajectors(est_pairs, gt_pairs, gt_traj):
"""
Extract only those transformation matrices from the ground truth trajectory that are also in the estimated trajectory.

Args:
est_pairs (numpy array): indices of point cloud pairs with enough estimated overlap [m, 3]
gt_pairs (numpy array): indices of gt overlaping point cloud pairs [n,3]
gt_traj (numpy array): 3d array of the gt transformation parameters [n,4,4]

Returns:
ext_traj (numpy array): gt transformation parameters for the point cloud pairs from est_pairs [m,4,4]
ext_traj (numpy array): gt transformation parameters for the point cloud pairs from est_pairs [m,4,4]
"""
ext_traj = np.zeros((len(est_pairs), 4, 4))

for est_idx, pair in enumerate(est_pairs):
pair[2] = gt_pairs[0][2]
gt_idx = np.where((gt_pairs == pair).all(axis=1))[0]
ext_traj[est_idx,:,:] = gt_traj[gt_idx,:,:]

ext_traj[est_idx, :, :] = gt_traj[gt_idx, :, :]

return ext_traj

def write_trajectory(traj,metadata, filename, dim=4):

def write_trajectory(traj, metadata, filename, dim=4):
"""
Writes the trajectory into a '.txt' file in 3DMatch/Redwood format.
Writes the trajectory into a '.txt' file in 3DMatch/Redwood format.
Format specification can be found at http://redwood-data.org/indoor/fileformat.html

Args:
traj (numpy array): trajectory for n pairs[n,dim, dim]
traj (numpy array): trajectory for n pairs[n,dim, dim]
metadata (numpy array): file containing metadata about fragment numbers [n,3]
filename (str): path where to save the '.txt' file containing trajectory data
dim (int): dimension of the transformation matrix (4x4 for 3D data)
Expand All @@ -182,39 +186,39 @@ def write_trajectory(traj,metadata, filename, dim=4):
for idx in range(traj.shape[0]):
# Only save the transfromation parameters for which the overlap threshold was satisfied
if metadata[idx][2]:
p = traj[idx,:,:].tolist()
p = traj[idx, :, :].tolist()
f.write('\t'.join(map(str, metadata[idx])) + '\n')
f.write('\n'.join('\t'.join(map('{0:.12f}'.format, p[i])) for i in range(dim)))
f.write('\n')


def read_pairs(src_path,tgt_path,n_points):
def read_pairs(src_path, tgt_path, n_points):
# get pointcloud
src = torch.load(src_path)
tgt = torch.load(tgt_path)
src_pcd, src_embedding = src['coords'],src['feats']
src_pcd, src_embedding = src['coords'], src['feats']
tgt_pcd, tgt_embedding = tgt['coords'], tgt['feats']
#permute and randomly select 2048/1024 points
if(src_pcd.shape[0]>n_points):
src_permute=np.random.permutation(src_pcd.shape[0])[:n_points]

# permute and randomly select 2048/1024 points
if (src_pcd.shape[0] > n_points):
src_permute = np.random.permutation(src_pcd.shape[0])[:n_points]
else:
src_permute=np.random.choice(src_pcd.shape[0],n_points)
if(tgt_pcd.shape[0]>n_points):
tgt_permute=np.random.permutation(tgt_pcd.shape[0])[:n_points]
src_permute = np.random.choice(src_pcd.shape[0], n_points)
if (tgt_pcd.shape[0] > n_points):
tgt_permute = np.random.permutation(tgt_pcd.shape[0])[:n_points]
else:
tgt_permute=np.random.choice(tgt_pcd.shape[0],n_points)
tgt_permute = np.random.choice(tgt_pcd.shape[0], n_points)

src_pcd,src_embedding = src_pcd[src_permute],src_embedding[src_permute]
tgt_pcd,tgt_embedding = tgt_pcd[tgt_permute],tgt_embedding[tgt_permute]
return src_pcd,src_embedding,tgt_pcd,tgt_embedding
src_pcd, src_embedding = src_pcd[src_permute], src_embedding[src_permute]
tgt_pcd, tgt_embedding = tgt_pcd[tgt_permute], tgt_embedding[tgt_permute]
return src_pcd, src_embedding, tgt_pcd, tgt_embedding


def evaluate_registration(num_fragment, result, result_pairs, gt_pairs, gt, gt_info, err2=0.2):
"""
Evaluates the performance of the registration algorithm according to the evaluation protocol defined
by the 3DMatch/Redwood datasets. The evaluation protocol can be found at http://redwood-data.org/indoor/registration.html

Args:
num_fragment (int): path to the '.txt' file containing the trajectory information data
result (numpy array): estimated transformation matrices [n,4,4]
Expand All @@ -230,14 +234,14 @@ def evaluate_registration(num_fragment, result, result_pairs, gt_pairs, gt, gt_i
"""

err2 = err2 ** 2
gt_mask = np.zeros((num_fragment, num_fragment), dtype=np.int)
flags=[]
gt_mask = np.zeros((num_fragment, num_fragment), dtype=int)
flags = []

for idx in range(gt_pairs.shape[0]):
i = int(gt_pairs[idx,0])
j = int(gt_pairs[idx,1])
i = int(gt_pairs[idx, 0])
j = int(gt_pairs[idx, 1])

# Only non consecutive pairs are tested
# Only non-consecutive pairs are tested
if j - i > 1:
gt_mask[i, j] = idx

Expand All @@ -246,14 +250,14 @@ def evaluate_registration(num_fragment, result, result_pairs, gt_pairs, gt, gt_i
good = 0
n_res = 0
for idx in range(result_pairs.shape[0]):
i = int(result_pairs[idx,0])
j = int(result_pairs[idx,1])
pose = result[idx,:,:]
i = int(result_pairs[idx, 0])
j = int(result_pairs[idx, 1])
pose = result[idx, :, :]

if gt_mask[i, j] > 0:
n_res += 1
gt_idx = gt_mask[i, j]
p = computeTransformationErr(np.linalg.inv(gt[gt_idx,:,:]) @ pose, gt_info[gt_idx,:,:])
p = computeTransformationErr(np.linalg.inv(gt[gt_idx, :, :]) @ pose, gt_info[gt_idx, :, :])
if p <= err2:
good += 1
flags.append(0)
Expand All @@ -268,70 +272,80 @@ def evaluate_registration(num_fragment, result, result_pairs, gt_pairs, gt, gt_i

return precision, recall, flags

def benchmark(est_folder,gt_folder):

def benchmark(est_folder, gt_folder):
scenes = sorted(os.listdir(gt_folder))
scene_names = [os.path.join(gt_folder,ele) for ele in scenes]
scene_names = [os.path.join(gt_folder, ele) for ele in scenes]

re_per_scene = defaultdict(list)
te_per_scene = defaultdict(list)
re_all, te_all, precision, recall = [], [], [], []
n_valids= []
n_valids = []

short_names=['Kitchen','Home 1','Home 2','Hotel 1','Hotel 2','Hotel 3','Study','MIT Lab']
with open(f'{est_folder}/result','w') as f:
f.write(("Scene\t¦ prec.\t¦ rec.\t¦ re\t¦ te\t¦ samples\t¦\n"))
short_names = ['Kitchen', 'Home 1', 'Home 2', 'Hotel 1', 'Hotel 2', 'Hotel 3', 'Study', 'MIT Lab']
with open(f'{est_folder}/result.txt', 'w') as f:
f.write("Scene\t¦ prec.\t¦ rec.\t¦ re\t¦ te\t¦ samples\t¦\n")

for idx,scene in enumerate(scene_names):
for idx, scene in enumerate(scene_names):
# ground truth info
gt_pairs, gt_traj = read_trajectory(os.path.join(scene, "gt.log"))
n_valid=0
n_valid = 0
for ele in gt_pairs:
diff=abs(int(ele[0])-int(ele[1]))
n_valid+=diff>1
diff = abs(int(ele[0]) - int(ele[1]))
n_valid += diff > 1
n_valids.append(n_valid)

n_fragments, gt_traj_cov = read_trajectory_info(os.path.join(scene,"gt.info"))
n_fragments, gt_traj_cov = read_trajectory_info(os.path.join(scene, "gt.info"))

# estimated info
est_pairs, est_traj = read_trajectory(os.path.join(est_folder,scenes[idx],'est.log'))
est_pairs, est_traj = read_trajectory(os.path.join(est_folder, scenes[idx], 'est.log'))

temp_precision, temp_recall, c_flag = evaluate_registration(n_fragments, est_traj, est_pairs, gt_pairs,
gt_traj, gt_traj_cov)

temp_precision, temp_recall,c_flag = evaluate_registration(n_fragments, est_traj, est_pairs, gt_pairs, gt_traj, gt_traj_cov)

# Filter out the estimated rotation matrices
ext_gt_traj = extract_corresponding_trajectors(est_pairs,gt_pairs, gt_traj)
ext_gt_traj = extract_corresponding_trajectors(est_pairs, gt_pairs, gt_traj)

re = rotation_error(torch.from_numpy(ext_gt_traj[:,0:3,0:3]), torch.from_numpy(est_traj[:,0:3,0:3])).cpu().numpy()[np.array(c_flag)==0]
te = translation_error(torch.from_numpy(ext_gt_traj[:,0:3,3:4]), torch.from_numpy(est_traj[:,0:3,3:4])).cpu().numpy()[np.array(c_flag)==0]
# Todo: check the case when rotation_error() and translation_error() return an empty list which causes
# errors (happens with sun3d-hote-uc-scan3d idx 4 and 'configs/benchmarks/3DMatch\\sun3d-mit_lab_hj-lab_hj_tea_nov_2_2012_scan1_erika' idx 7)
re = rotation_error(torch.from_numpy(ext_gt_traj[:, 0:3, 0:3]),
torch.from_numpy(est_traj[:, 0:3, 0:3])).cpu().numpy()[np.array(c_flag) == 0]
te = translation_error(torch.from_numpy(ext_gt_traj[:, 0:3, 3:4]),
torch.from_numpy(est_traj[:, 0:3, 3:4])).cpu().numpy()[np.array(c_flag) == 0]

if re.size <= 0:
re = np.array([0])
if te.size <= 0:
te = np.array([0])

re_per_scene['mean'].append(np.mean(re))
re_per_scene['median'].append(np.median(re))
re_per_scene['min'].append(np.min(re))
re_per_scene['max'].append(np.max(re))


te_per_scene['mean'].append(np.mean(te))
te_per_scene['median'].append(np.median(te))
te_per_scene['min'].append(np.min(te))
te_per_scene['max'].append(np.max(te))


re_all.extend(re.reshape(-1).tolist())
te_all.extend(te.reshape(-1).tolist())

precision.append(temp_precision)
recall.append(temp_recall)

f.write("{}\t¦ {:.3f}\t¦ {:.3f}\t¦ {:.3f}\t¦ {:.3f}\t¦ {:3d}¦\n".format(short_names[idx], temp_precision, temp_recall, np.median(re), np.median(te), n_valid))
np.save(f'{est_folder}/{scenes[idx]}/flag.npy',c_flag)

f.write("{}\t¦ {:.3f}\t¦ {:.3f}\t¦ {:.3f}\t¦ {:.3f}\t¦ {:3d}¦\n".format(short_names[idx], temp_precision,
temp_recall, np.median(re),
np.median(te), n_valid))
np.save(f'{est_folder}/{scenes[idx]}/flag.npy', c_flag)

weighted_precision = (np.array(n_valids) * np.array(precision)).sum() / np.sum(n_valids)

f.write("Mean precision: {:.3f}: +- {:.3f}\n".format(np.mean(precision),np.std(precision)))
f.write("Mean precision: {:.3f}: +- {:.3f}\n".format(np.mean(precision), np.std(precision)))
f.write("Weighted precision: {:.3f}\n".format(weighted_precision))

f.write("Mean median RRE: {:.3f}: +- {:.3f}\n".format(np.mean(re_per_scene['median']), np.std(re_per_scene['median'])))
f.write("Mean median RTE: {:.3F}: +- {:.3f}\n".format(np.mean(te_per_scene['median']),np.std(te_per_scene['median'])))
f.write("Mean median RRE: {:.3f}: +- {:.3f}\n".format(np.mean(re_per_scene['median']),
np.std(re_per_scene['median'])))
f.write("Mean median RTE: {:.3F}: +- {:.3f}\n".format(np.mean(te_per_scene['median']),
np.std(te_per_scene['median'])))
f.close()

Loading