-
Notifications
You must be signed in to change notification settings - Fork 928
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Voronoi Tesselation based Discrete Space (#2084)
This feature allows the user to build a discrete space based on a random sample of points, where neighbors are defined by Delaunay Triangulation. More specifically, Delaunay Triangulation is a dual-graph representation of the Voronoi Tesselation. Using this algorithm, we can easily find nearest neighbors without delimiting cells edges.
- Loading branch information
1 parent
efa51cd
commit c19f53e
Showing
5 changed files
with
353 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
from collections.abc import Sequence | ||
from itertools import combinations | ||
from random import Random | ||
|
||
import numpy as np | ||
|
||
from mesa.experimental.cell_space.cell import Cell | ||
from mesa.experimental.cell_space.discrete_space import DiscreteSpace | ||
|
||
|
||
class Delaunay: | ||
""" | ||
Class to compute a Delaunay triangulation in 2D | ||
ref: http://github.com/jmespadero/pyDelaunay2D | ||
""" | ||
|
||
def __init__(self, center: tuple = (0, 0), radius: int = 9999) -> None: | ||
""" | ||
Init and create a new frame to contain the triangulation | ||
center: Optional position for the center of the frame. Default (0,0) | ||
radius: Optional distance from corners to the center. | ||
""" | ||
center = np.asarray(center) | ||
# Create coordinates for the corners of the frame | ||
self.coords = [ | ||
center + radius * np.array((-1, -1)), | ||
center + radius * np.array((+1, -1)), | ||
center + radius * np.array((+1, +1)), | ||
center + radius * np.array((-1, +1)), | ||
] | ||
|
||
# Create two dicts to store triangle neighbours and circumcircles. | ||
self.triangles = {} | ||
self.circles = {} | ||
|
||
# Create two CCW triangles for the frame | ||
triangle1 = (0, 1, 3) | ||
triangle2 = (2, 3, 1) | ||
self.triangles[triangle1] = [triangle2, None, None] | ||
self.triangles[triangle2] = [triangle1, None, None] | ||
|
||
# Compute circumcenters and circumradius for each triangle | ||
for t in self.triangles: | ||
self.circles[t] = self._circumcenter(t) | ||
|
||
def _circumcenter(self, triangle: list) -> tuple: | ||
""" | ||
Compute circumcenter and circumradius of a triangle in 2D. | ||
""" | ||
points = np.asarray([self.coords[v] for v in triangle]) | ||
points2 = np.dot(points, points.T) | ||
a = np.bmat([[2 * points2, [[1], [1], [1]]], [[[1, 1, 1, 0]]]]) | ||
|
||
b = np.hstack((np.sum(points * points, axis=1), [1])) | ||
x = np.linalg.solve(a, b) | ||
bary_coords = x[:-1] | ||
center = np.dot(bary_coords, points) | ||
|
||
radius = np.sum(np.square(points[0] - center)) # squared distance | ||
return (center, radius) | ||
|
||
def _in_circle(self, triangle: list, point: list) -> bool: | ||
""" | ||
Check if point p is inside of precomputed circumcircle of triangle. | ||
""" | ||
center, radius = self.circles[triangle] | ||
return np.sum(np.square(center - point)) <= radius | ||
|
||
def add_point(self, point: Sequence) -> None: | ||
""" | ||
Add a point to the current DT, and refine it using Bowyer-Watson. | ||
""" | ||
point_index = len(self.coords) | ||
self.coords.append(np.asarray(point)) | ||
|
||
bad_triangles = [] | ||
for triangle in self.triangles: | ||
if self._in_circle(triangle, point): | ||
bad_triangles.append(triangle) | ||
|
||
boundary = [] | ||
triangle = bad_triangles[0] | ||
edge = 0 | ||
|
||
while True: | ||
opposite_triangle = self.triangles[triangle][edge] | ||
if opposite_triangle not in bad_triangles: | ||
boundary.append( | ||
( | ||
triangle[(edge + 1) % 3], | ||
triangle[(edge - 1) % 3], | ||
opposite_triangle, | ||
) | ||
) | ||
edge = (edge + 1) % 3 | ||
if boundary[0][0] == boundary[-1][1]: | ||
break | ||
else: | ||
edge = (self.triangles[opposite_triangle].index(triangle) + 1) % 3 | ||
triangle = opposite_triangle | ||
|
||
for triangle in bad_triangles: | ||
del self.triangles[triangle] | ||
del self.circles[triangle] | ||
|
||
new_triangles = [] | ||
for e0, e1, opposite_triangle in boundary: | ||
triangle = (point_index, e0, e1) | ||
self.circles[triangle] = self._circumcenter(triangle) | ||
self.triangles[triangle] = [opposite_triangle, None, None] | ||
if opposite_triangle: | ||
for i, neighbor in enumerate(self.triangles[opposite_triangle]): | ||
if neighbor and e1 in neighbor and e0 in neighbor: | ||
self.triangles[opposite_triangle][i] = triangle | ||
|
||
new_triangles.append(triangle) | ||
|
||
n = len(new_triangles) | ||
for i, triangle in enumerate(new_triangles): | ||
self.triangles[triangle][1] = new_triangles[(i + 1) % n] # next | ||
self.triangles[triangle][2] = new_triangles[(i - 1) % n] # previous | ||
|
||
def export_triangles(self) -> list: | ||
""" | ||
Export the current list of Delaunay triangles | ||
""" | ||
triangles_list = [ | ||
(a - 4, b - 4, c - 4) | ||
for (a, b, c) in self.triangles | ||
if a > 3 and b > 3 and c > 3 | ||
] | ||
return triangles_list | ||
|
||
def export_voronoi_regions(self): | ||
""" | ||
Export coordinates and regions of Voronoi diagram as indexed data. | ||
""" | ||
use_vertex = {i: [] for i in range(len(self.coords))} | ||
vor_coors = [] | ||
index = {} | ||
for triangle_index, (a, b, c) in enumerate(sorted(self.triangles)): | ||
vor_coors.append(self.circles[(a, b, c)][0]) | ||
use_vertex[a] += [(b, c, a)] | ||
use_vertex[b] += [(c, a, b)] | ||
use_vertex[c] += [(a, b, c)] | ||
|
||
index[(a, b, c)] = triangle_index | ||
index[(c, a, b)] = triangle_index | ||
index[(b, c, a)] = triangle_index | ||
|
||
regions = {} | ||
for i in range(4, len(self.coords)): | ||
vertex = use_vertex[i][0][0] | ||
region = [] | ||
for _ in range(len(use_vertex[i])): | ||
triangle = next( | ||
triangle for triangle in use_vertex[i] if triangle[0] == vertex | ||
) | ||
region.append(index[triangle]) | ||
vertex = triangle[1] | ||
regions[i - 4] = region | ||
|
||
return vor_coors, regions | ||
|
||
|
||
def round_float(x: float) -> int: | ||
return int(x * 500) | ||
|
||
|
||
class VoronoiGrid(DiscreteSpace): | ||
triangulation: Delaunay | ||
voronoi_coordinates: list | ||
regions: list | ||
|
||
def __init__( | ||
self, | ||
centroids_coordinates: Sequence[Sequence[float]], | ||
capacity: float | None = None, | ||
random: Random | None = None, | ||
cell_klass: type[Cell] = Cell, | ||
capacity_function: callable = round_float, | ||
cell_coloring_property: str | None = None, | ||
) -> None: | ||
""" | ||
A Voronoi Tessellation Grid. | ||
Given a set of points, this class creates a grid where a cell is centered in each point, | ||
its neighbors are given by Voronoi Tessellation cells neighbors | ||
and the capacity by the polygon area. | ||
Args: | ||
centroids_coordinates: coordinates of centroids to build the tessellation space | ||
capacity (int) : capacity of the cells in the discrete space | ||
random (Random): random number generator | ||
CellKlass (type[Cell]): type of cell class | ||
capacity_function (Callable): function to compute (int) capacity according to (float) area | ||
cell_coloring_property (str): voronoi visualization polygon fill property | ||
""" | ||
super().__init__(capacity=capacity, random=random, cell_klass=cell_klass) | ||
self.centroids_coordinates = centroids_coordinates | ||
self._validate_parameters() | ||
|
||
self._cells = { | ||
i: cell_klass(self.centroids_coordinates[i], capacity, random=self.random) | ||
for i in range(len(self.centroids_coordinates)) | ||
} | ||
|
||
self.regions = None | ||
self.triangulation = None | ||
self.voronoi_coordinates = None | ||
self.capacity_function = capacity_function | ||
self.cell_coloring_property = cell_coloring_property | ||
|
||
self._connect_cells() | ||
self._build_cell_polygons() | ||
|
||
def _connect_cells(self) -> None: | ||
""" | ||
Connect cells to neighbors based on given centroids and using Delaunay Triangulation | ||
""" | ||
self.triangulation = Delaunay() | ||
for centroid in self.centroids_coordinates: | ||
self.triangulation.add_point(centroid) | ||
|
||
for point in self.triangulation.export_triangles(): | ||
for i, j in combinations(point, 2): | ||
self._cells[i].connect(self._cells[j]) | ||
self._cells[j].connect(self._cells[i]) | ||
|
||
def _validate_parameters(self) -> None: | ||
if self.capacity is not None and not isinstance(self.capacity, float | int): | ||
raise ValueError("Capacity must be a number or None.") | ||
if not isinstance(self.centroids_coordinates, Sequence) or not isinstance( | ||
self.centroids_coordinates[0], Sequence | ||
): | ||
raise ValueError("Centroids should be a list of lists") | ||
dimension_1 = len(self.centroids_coordinates[0]) | ||
for coordinate in self.centroids_coordinates: | ||
if dimension_1 != len(coordinate): | ||
raise ValueError("Centroid coordinates should be a homogeneous array") | ||
|
||
def _get_voronoi_regions(self) -> tuple: | ||
if self.voronoi_coordinates is None or self.regions is None: | ||
self.voronoi_coordinates, self.regions = ( | ||
self.triangulation.export_voronoi_regions() | ||
) | ||
return self.voronoi_coordinates, self.regions | ||
|
||
@staticmethod | ||
def _compute_polygon_area(polygon: list) -> float: | ||
polygon = np.array(polygon) | ||
x = polygon[:, 0] | ||
y = polygon[:, 1] | ||
return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) | ||
|
||
def _build_cell_polygons(self): | ||
coordinates, regions = self._get_voronoi_regions() | ||
for region in regions: | ||
polygon = [coordinates[i] for i in regions[region]] | ||
self._cells[region].properties["polygon"] = polygon | ||
polygon_area = self._compute_polygon_area(polygon) | ||
self._cells[region].properties["area"] = polygon_area | ||
self._cells[region].capacity = self.capacity_function(polygon_area) | ||
self._cells[region].properties[self.cell_coloring_property] = 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.