Skip to content

Comprehensive Deep Learning concepts & Architectures implemented using PyTorch.

Notifications You must be signed in to change notification settings

pointer2Alvee/complete-deep-learning

Repository files navigation

Image 1 Image 2

📜 complete-deep-learning

🧠 Overview

Complete Deep Learning concepts & Architectures implemented using PyTorch. This is a comprehensive Deep Learning roadmap and implementation using PyTorch — starting from core math foundations to state-of-the-art neural network architectures. The repository is designed to give a solid theoretical and practical understanding of deep learning, structured progressively to cover foundational concepts, mathematical intuition, model architectures, training, and evaluation.

🎯 Use Cases

  • Implementing DL algorithms/models/concepts using python & pytorch
  • Learning & implementing the mathematical foundation of deep learning using python & pytorch
  • Learn deep learning from scratch with a mathematical + implementation-first approach
  • Study & build neural networks with PyTorch
  • Study & build DL architectures with PyTorch
  • Prepare for interviews and research
  • Use as a practical teaching/learning guide
  • Reference architecture and code for deep learning projects

🟢 Project Status

  • Current Version: V1.0
  • Actively maintained & expanded

📂 Repository Structure

complete-deep-learning
├── assets
│   └── images
│
├── datasets
│   └── images-text-audio-misc
│
├── math-foundations
│   ├── linear-algebra
│   ├── calculus
│   └── probability-stats
│                                              
├── basic-neural-network-architecture
│   ├── neuron-perceptron
│   ├── neural-net-layers
│   │   ├── input-hidden-output-layers
│   ├── activation-functions
│   ├── ann (multilayer-perceptron)
│   │   ├── geometric-view
│   │   ├── ann-maths (forwardprop, error-los-cost, backrprop)
│   │   ├── ann-regression-clasification
│   │   ├── multi-layer-ann
│   │   ├── multi-output-ann
│   │   └── model-depth-breadth
│   ├── meta-parameters
│   └── hyper-parameters
│
├── neural-network-concepts
│   ├── regularization
│   │   ├── prevent-overfitting-underfitting
│   │   ├── weight-reg
│   │   ├── dropout
│   │   ├── data-augmentation
│   │   ├── nomralization
│   │   │   ├── batch-nomralization
│   │   │   └── layer-nomralization
│   │   └── early-stopping
│   ├── optimization
│   │   ├── loss-cost-functions
│   │   ├── gradient-descent
│   │   |   ├── vanilla-gd, sgd, minibatch-sgd
│   │   ├── adaptive-optimization-algorithms
│   │   |   ├── momentum, nag, adagrad, rmsprop, adam, adamw
│   │   ├── learning-schedules
│   │   ├── weight-investigations
│   │   ├── numerical-stability
│   │   ├── meta-parameter-optimization
│   │   └── hyper-parameter-optimization
│   └── generalization
│       ├── cross-validation
│       ├── overfitting-underfitting
│       └── hyper-parameter-tuning
│
├── computational-performance
│   └── run-on-gpu
│
├── advanced-neural-network-architecture
│   ├── ffn
│   ├── cnn-modern-cnn
│   │   ├── convolution
│   │   ├── cannonical-cnn
│   │   └── cnn-adv-architectures
│   ├── rnn
│   │   ├── lstm
│   │   ├── gru
│   ├── gan
│   ├── gnn
│   ├── attention-mechanism
│   ├── transformer-models
│   │   └── bert
│   └── encoders
│       └── autoencoders
│
├── model-training
│   ├── transfer-learning
│   ├── style-transfer
|   ├── training-loop-structure (epoch, batch, loss logging)
|   ├── callbacks (custom logging, checkpointing)
|   ├── experiment-tracking (Weights & Biases, TensorBoard)
│   └──  multitask-learning
│
└── model-evaluation
|   ├── accuracy-precision-recall-f1-auc-roc
|   └── confusion-matrix
│
└── papers-to-code

✨ Features

  • Covers Concepts, Mathematical implementations, DL nets and architectures
  • Pure Python and Pytorch
  • Modular, clean, and reusable code
  • Educational and beginner-friendly
  • Covers everything from perceptrons to transformers
  • Clean, modular, and well-commented PyTorch implementations
  • Visualization, training loops, and performance metrics
  • Includes datasets for images, text, audio, and more
  • Papers-to-Code section to implement SOTA research

🚀 Getting Started

  • Knowledge Required : python, linear algebra, probability, statistics, numpy, matplotlib, scikit-learn, pytorch

💻 Software Requirements

  • IDE (VS Code) or jupyter notebook or google colab
  • Python 3

🛡️ Tech Stack

  • Python , PyTorch, TorchVision 💻
  • Numpy, Pandas, Matplotlib, Scikit-Learn 🧩

⚙️ Installation

git clone https://github.com/pointer2Alvee/complete-deep-learning.git
cd comprehensive-deep-learning

📖 Usage

  • Open .ipynb files inside each concept or NN architecture directory and
  • Run them to see training/inference steps, plots, and results.

🔍 Contents Breakdown

📚 Math Foundations
  • Linear Algebra, Calculus, Probability, Statistics
🧱 Neural Network Basics
  • Perceptrons, Layers, Activations, MLPs
  • Forward & Backpropagation math from scratch
  • Depth vs Breadth of models
  • Regression & Classification using ANN
🔧 Deep Learning Concepts
  • Regularization (Dropout, L2, Data Aug)
  • Optimization (SGD, Adam, RMSProp, Schedules)
  • Losses, Weight tuning, Meta & Hyperparams
⚙️ Advanced Architectures
  • CNNs (classic + modern)
  • RNNs, LSTM, GRU
  • GANs, GNNs
  • Transformers & BERT
  • Autoencoders
🏋️‍♂️ Model Training & Tracking
  • Training Loops, Epochs, Batches
  • Custom callbacks
  • TensorBoard, Weights & Biases logging
  • Transfer Learning & Style Transfer
  • Multitask learning
📊 Evaluation
  • Accuracy, Precision, Recall, F1, AUC-ROC
  • Confusion Matrix
🔬 Research to Practice
  • Paper Implementations → PyTorch Code

🧪 Sample Topics Implemented

  • ✅ Forward & Backpropagation from scratch

  • ✅ CNN with PyTorch

  • ✅ Regularization (Dropout, Weight Decay)

  • ✅ Adam vs SGD Performance Comparison

  • ✅ Image Classification using Transfer Learning

  • ✅ Transformer Attention Visualizations

  • ✅ Autoencoder for Denoising

  • ✅ Style Transfer with Pretrained CNN

  • ⏳ Upcoming : nlp, cv, llm, data engineering, feature engineering

🧭 Roadmap

  • Build foundational math notebooks
  • Implement perceptron → MLP → CNN
  • Add reinforcement learning section
  • Implement GAN, RNN, Transformer
  • More research paper implementations

🤝 Contributing

Contributions are welcomed!

  1. Fork the repo.
  2. Create a branch: git checkout -b feature/YourFeature
  3. Commit changes: git commit -m 'Add some feature'
  4. Push to branch: git push origin feature/YourFeature
  5. Open a Pull Request.

📜License

Distributed under the MIT License. See LICENSE.txt for more information.

🙏Acknowledgements

  • Special thanks to the open-source community / youtube for tools and resources.

Releases

No releases published

Packages

No packages published