Skip to content

Commit

Permalink
REGR: astype introducing decimals when casting from int with na to st…
Browse files Browse the repository at this point in the history
  • Loading branch information
phofl authored and pmhatre1 committed May 7, 2024
1 parent 41da905 commit 71c2301
Show file tree
Hide file tree
Showing 3 changed files with 10 additions and 1 deletion.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ Fixed regressions
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (:issue:`57040`)
- Fixed regression in :meth:`ExtensionArray.to_numpy` raising for non-numeric masked dtypes (:issue:`56991`)
- Fixed regression in :meth:`Index.join` raising ``TypeError`` when joining an empty index to a non-empty index containing mixed dtype values (:issue:`57048`)
- Fixed regression in :meth:`Series.astype` introducing decimals when converting from integer with missing values to string dtype (:issue:`57418`)
- Fixed regression in :meth:`Series.pct_change` raising a ``ValueError`` for an empty :class:`Series` (:issue:`57056`)
- Fixed regression in :meth:`Series.to_numpy` when dtype is given as float and the data contains NaNs (:issue:`57121`)

Expand Down
2 changes: 1 addition & 1 deletion pandas/_libs/lib.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -759,7 +759,7 @@ cpdef ndarray[object] ensure_string_array(
out = arr.astype(str).astype(object)
out[arr.isna()] = na_value
return out
arr = arr.to_numpy()
arr = arr.to_numpy(dtype=object)
elif not util.is_array(arr):
arr = np.array(arr, dtype="object")

Expand Down
8 changes: 8 additions & 0 deletions pandas/tests/series/methods/test_astype.py
Original file line number Diff line number Diff line change
Expand Up @@ -667,3 +667,11 @@ def test_astype_timedelta64_with_np_nan(self):
result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]")
expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]")
tm.assert_series_equal(result, expected)

@td.skip_if_no("pyarrow")
def test_astype_int_na_string(self):
# GH#57418
ser = Series([12, NA], dtype="Int64[pyarrow]")
result = ser.astype("string[pyarrow]")
expected = Series(["12", NA], dtype="string[pyarrow]")
tm.assert_series_equal(result, expected)

0 comments on commit 71c2301

Please sign in to comment.