Skip to content

InceptionV3, InceptionV4, Inception-Resnet pretrained models for Torch7 and PyTorch

License

Notifications You must be signed in to change notification settings

plunkgj/tensorflow-model-zoo.torch

 
 

Repository files navigation

Changes in this fork:

This fork is to support my 'TSN-Pytorch' fork, which updates code to be compatible with PyTorch 1.0, and other small changes to make code compatible with the SimulatedHome dataset. The original Readme is reproduced below.


Tensorflow Model Zoo for Torch7 and PyTorch

This is a porting of tensorflow pretrained models made by Remi Cadene and Micael Carvalho. Special thanks to Moustapha Cissé. All models have been tested on Imagenet.

This work was inspired by inception-v3.torch.

Using pretrained models

Torch7

Requirements

Please install torchnet-vision.

luarocks install --server=http://luarocks.org/dev torchnet-vision

Models available:

  • inceptionv3
  • inceptionv4
  • inceptionresnetv2
  • resnet{18, 34, 50, 101, 152, 200}
  • overfeat
  • vggm
  • vgg16

Simple example

require 'image'
tnt = require 'torchnet'
vision = require 'torchnet-vision'
model = vision.models.inceptionresnetv2
net = model.load()

augmentation = tnt.transform.compose{
   vision.image.transformimage.randomScale{
   	minSize = 299, maxSize = 350
   },
   vision.image.transformimage.randomCrop(299),
   vision.image.transformimage.colorNormalize{
      mean = model.mean, std  = model.std
   },
   function(img) return img:float() end
}

net:evaluate()
output = net:forward(augmentation(image.lena()))

PyTorch

Currently available in this repo only On pytorch/vision maybe!

Models available:

  • inceptionv4
  • inceptionresnetv2

Simple example

import torch
from inceptionv4.pytorch_load import inceptionv4
net = inceptionv4()
input = torch.autograd.Variable(torch.ones(1,3,299,299))
output = net.forward(input)

Reproducing the porting

Requirements

  • Tensorflow
  • Torch7
  • PyTorch
  • hdf5 for python3
  • hdf5 for lua

Example of commands

In Tensorflow: Download tensorflow parameters and extract them in ./dump directory.

python3 inceptionv4/tensorflow_dump.py

In Torch7 or PyTorch: Create the network, load the parameters, launch few tests and save the network in ./save directory.

th inceptionv4/torch_load.lua
python3 inceptionv4/pytorch_load.py

About

InceptionV3, InceptionV4, Inception-Resnet pretrained models for Torch7 and PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 68.9%
  • C++ 26.1%
  • Jupyter Notebook 1.7%
  • Shell 1.5%
  • Lua 1.5%
  • Makefile 0.2%
  • Dockerfile 0.1%