Bo Li (bli at cs dot wisc dot edu)
- Introduction
- Compilation & Installation
- Usage
- Example
- Simulation
- Generate Transcript-to-Gene-Map from Trinity Output
- Differential Expression Analysis
- Authors
- Acknowledgements
- License
RSEM is a software package for estimating gene and isoform expression levels from RNA-Seq data. The RSEM package provides an user-friendly interface, supports threads for parallel computation of the EM algorithm, single-end and paired-end read data, quality scores, variable-length reads and RSPD estimation. In addition, it provides posterior mean and 95% credibility interval estimates for expression levels. For visualization, It can generate BAM and Wiggle files in both transcript-coordinate and genomic-coordinate. Genomic-coordinate files can be visualized by both UCSC Genome browser and Broad Institute's Integrative Genomics Viewer (IGV). Transcript-coordinate files can be visualized by IGV. RSEM also has its own scripts to generate transcript read depth plots in pdf format. The unique feature of RSEM is, the read depth plots can be stacked, with read depth contributed to unique reads shown in black and contributed to multi-reads shown in red. In addition, models learned from data can also be visualized. Last but not least, RSEM contains a simulator.
To compile RSEM, simply run
make
For Cygwin users, run
make cygwin=true
To compile EBSeq, which is included in the RSEM package, run
make ebseq
To install RSEM, simply put the RSEM directory in your environment's PATH variable. Alternatively, run
make install
By default, RSEM executables are installed to /usr/local/bin
. You
can change the installation location by setting DESTDIR
and/or
prefix
variables. The RSEM executables will be installed to
${DESTDIR}${prefix}/bin
. The default values of DESTDIR
and
prefix
are DESTDIR=
and prefix=/usr/local
. For example,
make install DESTDIR=/home/my_name prefix=/software
will install RSEM executables to /home/my_name/software/bin
.
Note that make install
does not install EBSeq
related scripts,
such as rsem-generate-ngvector
, rsem-run-ebseq
, and
rsem-control-fdr
. But rsem-generate-data-matrix
, which generates
count matrix for differential expression analysis, is installed.
C++, Perl and R are required to be installed.
To use the --gff3
option of rsem-prepare-reference
, Python is also
required to be installed.
To take advantage of RSEM's built-in support for the Bowtie/Bowtie 2/STAR alignment program, you must have Bowtie/Bowtie 2/STAR installed.
RSEM can extract reference transcripts from a genome if you provide it with gene annotations in a GTF/GFF3 file. Alternatively, you can provide RSEM with transcript sequences directly.
Please note that GTF files generated from the UCSC Table Browser do not contain isoform-gene relationship information. However, if you use the UCSC Genes annotation track, this information can be recovered by downloading the knownIsoforms.txt file for the appropriate genome.
To prepare the reference sequences, you should run the
rsem-prepare-reference
program. Run
rsem-prepare-reference --help
to get usage information or visit the rsem-prepare-reference documentation page.
RefSeq and Ensembl are two frequently used annotations. For human and mouse, GENCODE annotaions are also available. In this section, we show how to build RSEM references using these annotations. Note that it is important to pair the genome with the annotation file for each annotation source. In addition, we recommend users to use the primary assemblies of genomes. Without loss of generality, we use human genome as an example and in addition build Bowtie indices.
For RefSeq, the genome and annotation file in GFF3 format can be found at RefSeq genomes FTP:
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/
For example, the human genome and GFF3 file locate at the subdirectory
vertebrate_mammalian/Homo_sapiens/all_assembly_versions/GCF_000001405.31_GRCh38.p5
. GCF_000001405.31_GRCh38.p5
is the latest annotation version when this section was written.
Download and decompress the genome and annotation files to your working directory:
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/all_assembly_versions/GCF_000001405.31_GRCh38.p5/GCF_000001405.31_GRCh38.p5_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/all_assembly_versions/GCF_000001405.31_GRCh38.p5/GCF_000001405.31_GRCh38.p5_genomic.gff.gz
GCF_000001405.31_GRCh38.p5_genomic.fna
contains all top level
sequences, including patches and haplotypes. To obtain the primary
assembly, run the following RSEM python script:
rsem-refseq-extract-primary-assembly GCF_000001405.31_GRCh38.p5_genomic.fna GCF_000001405.31_GRCh38.p5_genomic.primary_assembly.fna
Then type the following command to build RSEM references:
rsem-prepare-reference --gff3 GCF_000001405.31_GRCh38.p5_genomic.gff \
--trusted-sources BestRefSeq,Curated\ Genomic \
--bowtie \
GCF_000001405.31_GRCh38.p5_genomic.primary_assembly.fna \
ref/human_refseq
In the above command, --trusted-sources
tells RSEM to only extract
transcripts from RefSeq sources like BestRefSeq
or Curated Genomic
. By
default, RSEM trust all sources. There is also an
--gff3-RNA-patterns
option and its default is mRNA
. Setting
--gff3-RNA-patterns mRNA,rRNA
will allow RSEM to extract all mRNAs
and rRNAs from the genome. Visit here
for more details.
Because the gene and transcript IDs (e.g. gene1000, rna28655)
extracted from RefSeq GFF3 files are hard to understand, it is
recommended to turn on the --append-names
option in
rsem-calculate-expression
for better interpretation of
quantification results.
For Ensembl, the genome and annotation files can be found at Ensembl FTP.
Download and decompress the human genome and GTF files:
ftp://ftp.ensembl.org/pub/release-83/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-83/gtf/homo_sapiens/Homo_sapiens.GRCh38.83.gtf.gz
Then use the following command to build RSEM references:
rsem-prepare-reference --gtf Homo_sapiens.GRCh38.83.gtf \
--bowtie \
Homo_sapiens.GRCh38.dna.primary_assembly.fa \
ref/human_ensembl
If you want to use GFF3 file instead, which is unnecessary and not
recommended, you should add option --gff3-RNA-patterns transcript
because mRNA
is replaced by transcript
in Ensembl GFF3 files.
GENCODE only provides human and mouse annotations. The genome and annotation files can be found from GENCODE website.
Download and decompress the human genome and GTF files:
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_24/GRCh38.primary_assembly.genome.fa.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_24/gencode.v24.annotation.gtf.gz
Then type the following command:
rsem-prepare-reference --gtf gencode.v24.annotation.gtf \
--bowtie \
GRCh38.primary_assembly.genome.fa \
ref/human_gencode
Similar to Ensembl annotation, if you want to use GFF3 files (not
recommended), add option --gff3-RNA-patterns transcript
.
To calculate expression values, you should run the
rsem-calculate-expression
program. Run
rsem-calculate-expression --help
to get usage information or visit the rsem-calculate-expression documentation page.
For single-end models, users have the option of providing a fragment
length distribution via the --fragment-length-mean
and
--fragment-length-sd
options. The specification of an accurate fragment
length distribution is important for the accuracy of expression level
estimates from single-end data. If the fragment length mean and sd are
not provided, RSEM will not take a fragment length distribution into
consideration.
By default, RSEM automates the alignment of reads to reference
transcripts using the Bowtie aligner. Turn on --bowtie2
for
rsem-prepare-reference
and rsem-calculate-expression
will allow
RSEM to use the Bowtie 2 alignment program instead. Please note that
indel alignments, local alignments and discordant alignments are
disallowed when RSEM uses Bowtie 2 since RSEM currently cannot handle
them. See the description of --bowtie2
option in
rsem-calculate-expression
for more details. Similarly, turn on
--star
will allow RSEM to use the STAR aligner. To use an
alternative alignment program, align the input reads against the file
reference_name.idx.fa
generated by rsem-prepare-reference
, and
format the alignment output in SAM/BAM/CRAM format. Then, instead of
providing reads to rsem-calculate-expression
, specify the
--alignments
option and provide the SAM/BAM/CRAM file as an
argument.
RSEM requires the alignments of a read to be adjacent. For paired-end reads, RSEM also requires the two mates of any alignment be adjacent. To check if your SAM/BAM/CRAM file satisfy the requirements, run
rsem-sam-validator <input.sam/input.bam/input.cram>
If your file does not satisfy the requirements, you can use
convert-sam-for-rsem
to convert it into a BAM file which RSEM can
process. Run
convert-sam-for-rsem --help
to get usage information or visit the convert-sam-for-rsem documentation page.
Note that RSEM does ** not ** support gapped alignments. So make sure
that your aligner does not produce alignments with
intersions/deletions. In addition, you should make sure that you use
reference_name.idx.fa
, which is generated by RSEM, to build your
aligner's indices.
RSEM includes a copy of SAMtools. When --no-bam-output
is not
specified and --sort-bam-by-coordinate
is specified, RSEM will
produce these three files:sample_name.transcript.bam
, the unsorted
BAM file, sample_name.transcript.sorted.bam
and
sample_name.transcript.sorted.bam.bai
the sorted BAM file and
indices generated by the SAMtools included. All three files are in
transcript coordinates. When users in addition specify the
--output-genome-bam
option, RSEM will produce three more files:
sample_name.genome.bam
, the unsorted BAM file,
sample_name.genome.sorted.bam
and
sample_name.genome.sorted.bam.bai
the sorted BAM file and
indices. All these files are in genomic coordinates.
Normally, RSEM will do this for you via --output-genome-bam
option
of rsem-calculate-expression
. However, if you have run
rsem-prepare-reference
and use reference_name.idx.fa
to build
indices for your aligner, you can use rsem-tbam2gbam
to convert your
transcript coordinate BAM alignments file into a genomic coordinate
BAM alignments file without the need to run the whole RSEM
pipeline.
Usage:
rsem-tbam2gbam reference_name unsorted_transcript_bam_input genome_bam_output
reference_name : The name of reference built by rsem-prepare-reference
unsorted_transcript_bam_input : This file should satisfy: 1) the alignments of a same read are grouped together, 2) for any paired-end alignment, the two mates should be adjacent to each other, 3) this file should not be sorted by samtools
genome_bam_output : The output genomic coordinate BAM file's name
A wiggle plot representing the expected number of reads overlapping
each position in the genome/transcript set can be generated from the
sorted genome/transcript BAM file output. To generate the wiggle
plot, run the rsem-bam2wig
program on the
sample_name.genome.sorted.bam
/sample_name.transcript.sorted.bam
file.
Usage:
rsem-bam2wig sorted_bam_input wig_output wiggle_name [--no-fractional-weight]
sorted_bam_input : Input BAM format file, must be sorted
wig_output : Output wiggle file's name, e.g. output.wig
wiggle_name : The name of this wiggle plot
--no-fractional-weight : If this is set, RSEM will not look for "ZW" tag and each alignment appeared in the BAM file has weight 1. Set this if your BAM file is not generated by RSEM. Please note that this option must be at the end of the command line
c) Loading a BAM and/or Wiggle file into the UCSC Genome Browser or Integrative Genomics Viewer(IGV)
For UCSC genome browser, please refer to the UCSC custom track help page.
For integrative genomics viewer, please refer to the IGV home page. Note: Although IGV can generate read depth plot from the BAM file given, it cannot recognize "ZW" tag RSEM puts. Therefore IGV counts each alignment as weight 1 instead of the expected weight for the plot it generates. So we recommend to use the wiggle file generated by RSEM for read depth visualization.
Here are some guidance for visualizing transcript coordinate files using IGV:
- Import the transcript sequences as a genome
Select File -> Import Genome, then fill in ID, Name and Fasta file. Fasta file should be reference_name.idx.fa
. After that, click Save button. Suppose ID is filled as reference_name
, a file called reference_name.genome
will be generated. Next time, we can use: File -> Load Genome, then select reference_name.genome
.
- Load visualization files
Select File -> Load from File, then choose one transcript coordinate visualization file generated by RSEM. IGV might require you to convert wiggle file to tdf file. You should use igvtools to perform this task. One way to perform the conversion is to use the following command:
igvtools tile reference_name.transcript.wig reference_name.transcript.tdf reference_name.genome
To generate transcript wiggle plots, you should run the
rsem-plot-transcript-wiggles
program. Run
rsem-plot-transcript-wiggles --help
to get usage information or visit the rsem-plot-transcript-wiggles documentation page.
RSEM provides an R script, rsem-plot-model
, for visulazing the model learned.
Usage:
rsem-plot-model sample_name output_plot_file
sample_name: the name of the sample analyzed
output_plot_file: the file name for plots generated from the model. It is a pdf file
The plots generated depends on read type and user configuration. It may include fragment length distribution, mate length distribution, read start position distribution (RSPD), quality score vs observed quality given a reference base, position vs percentage of sequencing error given a reference base and histogram of reads with different number of alignments.
fragment length distribution and mate length distribution: x-axis is fragment/mate length, y axis is the probability of generating a fragment/mate with the associated length
RSPD: Read Start Position Distribution. x-axis is bin number, y-axis is the probability of each bin. RSPD can be used as an indicator of 3' bias
Quality score vs. observed quality given a reference base: x-axis is Phred quality scores associated with data, y-axis is the "observed quality", Phred quality scores learned by RSEM from the data. Q = -10log_10(P), where Q is Phred quality score and P is the probability of sequencing error for a particular base
Position vs. percentage sequencing error given a reference base: x-axis is position and y-axis is percentage sequencing error
Histogram of reads with different number of alignments: x-axis is the number of alignments a read has and y-axis is the number of such reads. The inf in x-axis means number of reads filtered due to too many alignments
Suppose we download the mouse genome from UCSC Genome Browser. We do
not add poly(A) tails and use /ref/mouse_0
as the reference name.
We have a FASTQ-formatted file, mmliver.fq
, containing single-end
reads from one sample, which we call mmliver_single_quals
. We want
to estimate expression values by using the single-end model with a
fragment length distribution. We know that the fragment length
distribution is approximated by a normal distribution with a mean of
150 and a standard deviation of 35. We wish to generate 95%
credibility intervals in addition to maximum likelihood estimates.
RSEM will be allowed 1G of memory for the credibility interval
calculation. We will visualize the probabilistic read mappings
generated by RSEM on UCSC genome browser. We will generate a list of
genestranscript wiggle plots in
output.pdf. The list is
gene_ids.txt. We will visualize the models learned in
mmliver_single_quals.models.pdf`
The commands for this scenario are as follows:
rsem-prepare-reference --gtf mm9.gtf --transcript-to-gene-map knownIsoforms.txt --bowtie --bowtie-path /sw/bowtie /data/mm9 /ref/mouse_0
rsem-calculate-expression --bowtie-path /sw/bowtie --phred64-quals --fragment-length-mean 150.0 --fragment-length-sd 35.0 -p 8 --output-genome-bam --calc-ci --ci-memory 1024 /data/mmliver.fq /ref/mouse_0 mmliver_single_quals
rsem-bam2wig mmliver_single_quals.sorted.bam mmliver_single_quals.sorted.wig mmliver_single_quals
rsem-plot-transcript-wiggles --gene-list --show-unique mmliver_single_quals gene_ids.txt output.pdf
rsem-plot-model mmliver_single_quals mmliver_single_quals.models.pdf
RSEM provides users the rsem-simulate-reads
program to simulate RNA-Seq data based on parameters learned from real data sets. Run
rsem-simulate-reads
to get usage information or read the following subsections.
rsem-simulate-reads reference_name estimated_model_file estimated_isoform_results theta0 N output_name [-q]
reference_name: The name of RSEM references, which should be already generated by rsem-prepare-reference
estimated_model_file: This file describes how the RNA-Seq reads will be sequenced given the expression levels. It determines what kind of reads will be simulated (single-end/paired-end, w/o quality score) and includes parameters for fragment length distribution, read start position distribution, sequencing error models, etc. Normally, this file should be learned from real data using rsem-calculate-expression
. The file can be found under the sample_name.stat
folder with the name of sample_name.model
. model_file_description.txt
provides the format and meanings of this file.
estimated_isoform_results: This file contains expression levels for all isoforms recorded in the reference. It can be learned using rsem-calculate-expression
from real data. The corresponding file users want to use is sample_name.isoforms.results
. If simulating from user-designed expression profile is desired, start from a learned sample_name.isoforms.results
file and only modify the TPM
column. The simulator only reads the TPM column. But keeping the file format the same is required. If the RSEM references built are aware of allele-specific transcripts, sample_name.alleles.results
should be used instead.
theta0: This parameter determines the fraction of reads that are coming from background "noise" (instead of from a transcript). It can also be estimated using rsem-calculate-expression
from real data. Users can find it as the first value of the third line of the file sample_name.stat/sample_name.theta
.
N: The total number of reads to be simulated. If rsem-calculate-expression
is executed on a real data set, the total number of reads can be found as the 4th number of the first line of the file sample_name.stat/sample_name.cnt
.
output_name: Prefix for all output files.
--seed seed: Set seed for the random number generator used in simulation. The seed should be a 32-bit unsigned integer.
-q: Set it will stop outputting intermediate information.
output_name.sim.isoforms.results, output_name.sim.genes.results: Expression levels estimated by counting where each simulated read comes from. output_name.sim.alleles.results: Allele-specific expression levels estimated by counting where each simulated read comes from.
output_name.fa if single-end without quality score;
output_name.fq if single-end with quality score;
output_name_1.fa & output_name_2.fa if paired-end without quality
score;
output_name_1.fq & output_name_2.fq if paired-end with quality score.
Format of the header line: Each simulated read's header line encodes where it comes from. The header line has the format:
{>/@}_rid_dir_sid_pos[_insertL]
{>/@}: Either '>' or '@' must appear. '>' appears if FASTA files are generated and '@' appears if FASTQ files are generated
rid: Simulated read's index, numbered from 0
dir: The direction of the simulated read. 0 refers to forward strand ('+') and 1 refers to reverse strand ('-')
sid: Represent which transcript this read is simulated from. It ranges between 0 and M, where M is the total number of transcripts. If sid=0, the read is simulated from the background noise. Otherwise, the read is simulated from a transcript with index sid. Transcript sid's transcript name can be found in the transcript_id
column of the sample_name.isoforms.results
file (at line sid + 1, line 1 is for column names)
pos: The start position of the simulated read in strand dir of transcript sid. It is numbered from 0
insertL: Only appear for paired-end reads. It gives the insert length of the simulated read.
Suppose we want to simulate 50 millon single-end reads with quality scores and use the parameters learned from Example. In addition, we set theta0 as 0.2 and output_name as simulated_reads
. The command is:
rsem-simulate-reads /ref/mouse_0 mmliver_single_quals.stat/mmliver_single_quals.model mmliver_single_quals.isoforms.results 0.2 50000000 simulated_reads
For Trinity users, RSEM provides a perl script to generate transcript-to-gene-map file from the fasta file produced by Trinity.
extract-transcript-to-gene-map-from-trinity trinity_fasta_file map_file
trinity_fasta_file: the fasta file produced by trinity, which contains all transcripts assembled.
map_file: transcript-to-gene-map file's name.
Popular differential expression (DE) analysis tools such as edgeR and DESeq do not take variance due to read mapping uncertainty into consideration. Because read mapping ambiguity is prevalent among isoforms and de novo assembled transcripts, these tools are not ideal for DE detection in such conditions.
EBSeq, an empirical Bayesian DE analysis tool developed in UW-Madison, can take variance due to read mapping ambiguity into consideration by grouping isoforms with parent gene's number of isoforms. In addition, it is more robust to outliers. For more information about EBSeq (including the paper describing their method), please visit EBSeq's website.
RSEM includes EBSeq in its folder named EBSeq
. To use it, first type
make ebseq
to compile the EBSeq related codes.
EBSeq requires gene-isoform relationship for its isoform DE
detection. However, for de novo assembled transcriptome, it is hard to
obtain an accurate gene-isoform relationship. Instead, RSEM provides a
script rsem-generate-ngvector
, which clusters transcripts based on
measures directly relating to read mappaing ambiguity. First, it
calculates the 'unmappability' of each transcript. The 'unmappability'
of a transcript is the ratio between the number of k mers with at
least one perfect match to other transcripts and the total number of k
mers of this transcript, where k is a parameter. Then, Ng vector is
generated by applying Kmeans algorithm to the 'unmappability' values
with number of clusters set as 3. This program will make sure the mean
'unmappability' scores for clusters are in ascending order. All
transcripts whose lengths are less than k are assigned to cluster
3. Run
rsem-generate-ngvector --help
to get usage information or visit the rsem-generate-ngvector documentation page.
If your reference is a de novo assembled transcript set, you should
run rsem-generate-ngvector
first. Then load the resulting
output_name.ngvec
into R. For example, you can use
NgVec <- scan(file="output_name.ngvec", what=0, sep="\n")
. After that, set "NgVector = NgVec" for your differential expression
test (either EBTest
or EBMultiTest
).
For users' convenience, RSEM also provides a script
rsem-generate-data-matrix
to extract input matrix from expression
results:
rsem-generate-data-matrix sampleA.[genes/isoforms].results sampleB.[genes/isoforms].results ... > output_name.counts.matrix
The results files are required to be either all gene level results or all isoform level results. You can load the matrix into R by
IsoMat <- data.matrix(read.table(file="output_name.counts.matrix"))
before running either EBTest
or EBMultiTest
.
Lastly, RSEM provides two scripts, rsem-run-ebseq
and
rsem-control-fdr
, to help users find differential expressed
genes/transcripts. First, rsem-run-ebseq
calls EBSeq to calculate related statistics
for all genes/transcripts. Run
rsem-run-ebseq --help
to get usage information or visit the rsem-run-ebseq documentation
page. Second,
rsem-control-fdr
takes rsem-run-ebseq
's result and reports called
differentially expressed genes/transcripts by controlling the false
discovery rate. Run
rsem-control-fdr --help
to get usage information or visit the rsem-control-fdr documentation page. These two scripts can perform DE analysis on either 2 conditions or multiple conditions.
Please note that rsem-run-ebseq
and rsem-control-fdr
use EBSeq's
default parameters. For advanced use of EBSeq or information about how
EBSeq works, please refer to EBSeq's
manual.
Questions related to EBSeq should be sent to Ning Leng.
Bo Li and Colin Dewey designed the RSEM algorithm. Bo Li implemented the RSEM software. Peng Liu contributed the STAR aligner options.
RSEM uses the Boost C++ and SAMtools libraries. RSEM includes EBSeq for differential expression analysis.
We thank earonesty, Dr. Samuel Arvidsson, John Marshall, and Michael R. Crusoe for contributing patches.
We thank Han Lin, j.miller, Joël Fillon, Dr. Samuel G. Younkin, Malcolm Cook, Christina Wells, Uroš Šipetić, outpaddling, rekado, and Josh Richer for suggesting possible fixes.
Note that bam_sort.c
of SAMtools is slightly modified so that
samtools sort -n
will not move the two mates of paired-end
alignments apart. In addition, we turn on the --without-curses
option when configuring SAMtools and thus SAMtools' curses-based
tview
subcommand is not built.
RSEM is licensed under the GNU General Public License v3.