Skip to content
/ MCTF Public
forked from mlvlab/MCTF

Official implementation of CVPR 2024 paper "Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers".

License

Notifications You must be signed in to change notification settings

pizard/MCTF

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MCTF

PWC
PWC
PWC

Official implementation of CVPR 2024 paper "Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers".

MCTF Figure

1. Setup

  1. Clone repository
git clone https://github.com/mlvlab/MCTF.git
cd MCTF
  1. Setup conda environment
conda env create --file env.yaml
conda activate mctf

Run Experiments

Finetuning

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --data_path /path/to/imagenet --dataset IMNET --output_dir ./output --batch-size 128 --min_lr_times 0.1 --lr_times 0.03 --epochs 30 --activate_layer [1,2,3,4,5,6,7,8,9,10,11] --model deit_small --use_mctf True --mctf_type [16,8,0,1,1,1,20,40,1,1,0] --task_type [1,1,0.4] --task_weight [1.0,1.0,3.0] 

Evaluation

To evaluate a pre-trained MCTF (DeiT-S) model on ImageNet val with a single GPU run:

python main.py --eval --data_path /path/to/imagenet --dataset IMNET --resume /path/to/checkpoint/ --use_mctf True --mctf_type [16,0,0,1,1,1,20,40,1,1,0] --task_type [1,0,0,0] --r_evals [16] --activate_layer [1,2,3,4,5,6,7,8,9,10,11] --model deit_small

Model Zoo

Flops and Throughput are measured with single RTX 3090. MCTF-Fast is advanced version of MCTF that boost the throughput while keeping the accuracy and FLOPs by changing the drop ratio per layer.

Baseline Model Top 1 Accuracy GFLOPs Throughput script Checkpoint
DeiT-T 72.2 1.26 - - -
MCTF (DeiT-T) 72.7 0.71 4639 script drive
MCTF-Fast (DeiT-T) 72.7 0.75 7386 script drive
DeiT-S 79.8 4.61 - - -
MCTF (DeiT-S) 80.1 2.60 2302 script drive
MCTF-Fast (DeiT-S) 80.1 2.76 3302 script drive

Citation

@inproceedings{lee2024multi,
  title={Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers},
  author={Lee, Sanghyeok and Choi, Joonmyung and Kim, Hyunwoo J.},
  booktitle={Conference on Computer Vision and Pattern Recognition},
  year={2024}
}

About

Official implementation of CVPR 2024 paper "Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.7%
  • Shell 1.3%