Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Isolate generic preprocessing functions #3180

Merged
merged 8 commits into from
Aug 12, 2021
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 2 additions & 19 deletions gensim/corpora/lowcorpus.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,28 +11,11 @@

from gensim import utils
from gensim.corpora import IndexedCorpus

from gensim.parsing.preprocessing import split_on_space

logger = logging.getLogger(__name__)


def split_on_space(s):
"""Split line by spaces, used in :class:`gensim.corpora.lowcorpus.LowCorpus`.

Parameters
----------
s : str
Some line.

Returns
-------
list of str
List of tokens from `s`.

"""
return [word for word in utils.to_unicode(s).strip().split(' ') if word]


class LowCorpus(IndexedCorpus):
"""Corpus handles input in `GibbsLda++ format <http://gibbslda.sourceforge.net/>`_.

Expand Down Expand Up @@ -86,7 +69,7 @@ def __init__(self, fname, id2word=None, line2words=split_on_space):
If not provided, the mapping is constructed directly from `fname`.
line2words : callable, optional
Function which converts lines(str) into tokens(list of str),
using :func:`~gensim.corpora.lowcorpus.split_on_space` as default.
using :func:`~gensim.parsing.preprocessing.split_on_space` as default.

"""
IndexedCorpus.__init__(self, fname)
Expand Down
104 changes: 13 additions & 91 deletions gensim/corpora/textcorpus.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,93 +44,15 @@

from gensim import interfaces, utils
from gensim.corpora.dictionary import Dictionary
from gensim.parsing.preprocessing import STOPWORDS, RE_WHITESPACE
from gensim.parsing.preprocessing import (
remove_stopword_tokens, remove_short_tokens,
lower_to_unicode, strip_multiple_whitespaces,
)
from gensim.utils import deaccent, simple_tokenize

logger = logging.getLogger(__name__)


def remove_stopwords(tokens, stopwords=STOPWORDS):
"""Remove stopwords using list from `gensim.parsing.preprocessing.STOPWORDS`.

Parameters
----------
tokens : iterable of str
Sequence of tokens.
stopwords : iterable of str, optional
Sequence of stopwords

Returns
-------
list of str
List of tokens without `stopwords`.

"""
return [token for token in tokens if token not in stopwords]


def remove_short(tokens, minsize=3):
"""Remove tokens shorter than `minsize` chars.

Parameters
----------
tokens : iterable of str
Sequence of tokens.
minsize : int, optimal
Minimal length of token (include).

Returns
-------
list of str
List of tokens without short tokens.

"""
return [token for token in tokens if len(token) >= minsize]


def lower_to_unicode(text, encoding='utf8', errors='strict'):
"""Lowercase `text` and convert to unicode, using :func:`gensim.utils.any2unicode`.

Parameters
----------
text : str
Input text.
encoding : str, optional
Encoding that will be used for conversion.
errors : str, optional
Error handling behaviour, used as parameter for `unicode` function (python2 only).

Returns
-------
str
Unicode version of `text`.

See Also
--------
:func:`gensim.utils.any2unicode`
Convert any string to unicode-string.

"""
return utils.to_unicode(text.lower(), encoding, errors)


def strip_multiple_whitespaces(s):
"""Collapse multiple whitespace characters into a single space.

Parameters
----------
s : str
Input string

Returns
-------
str
String with collapsed whitespaces.

"""
return RE_WHITESPACE.sub(" ", s)


class TextCorpus(interfaces.CorpusABC):
"""Helper class to simplify the pipeline of getting BoW vectors from plain text.

Expand Down Expand Up @@ -177,12 +99,12 @@ class TextCorpus(interfaces.CorpusABC):

The default preprocessing consists of:

#. :func:`~gensim.corpora.textcorpus.lower_to_unicode` - lowercase and convert to unicode (assumes utf8 encoding)
#. :func:`~gensim.parsing.preprocessing.lower_to_unicode` - lowercase and convert to unicode (assumes utf8 encoding)
#. :func:`~gensim.utils.deaccent`- deaccent (asciifolding)
#. :func:`~gensim.corpora.textcorpus.strip_multiple_whitespaces` - collapse multiple whitespaces into a single one
#. :func:`~gensim.parsing.preprocessing.strip_multiple_whitespaces` - collapse multiple whitespaces into one
#. :func:`~gensim.utils.simple_tokenize` - tokenize by splitting on whitespace
#. :func:`~gensim.corpora.textcorpus.remove_short` - remove words less than 3 characters long
#. :func:`~gensim.corpora.textcorpus.remove_stopwords` - remove stopwords
#. :func:`~gensim.parsing.preprocessing.remove_short_tokens` - remove words less than 3 characters long
#. :func:`~gensim.parsing.preprocessing.remove_stopword_tokens` - remove stopwords

"""

Expand All @@ -204,15 +126,15 @@ def __init__(self, input=None, dictionary=None, metadata=False, character_filter
Each will be applied to the text of each document in order, and should return a single string with
the modified text. For Python 2, the original text will not be unicode, so it may be useful to
convert to unicode as the first character filter.
If None - using :func:`~gensim.corpora.textcorpus.lower_to_unicode`,
:func:`~gensim.utils.deaccent` and :func:`~gensim.corpora.textcorpus.strip_multiple_whitespaces`.
If None - using :func:`~gensim.parsing.preprocessing.lower_to_unicode`,
:func:`~gensim.utils.deaccent` and :func:`~gensim.parsing.preprocessing.strip_multiple_whitespaces`.
tokenizer : callable, optional
Tokenizer for document, if None - using :func:`~gensim.utils.simple_tokenize`.
token_filters : iterable of callable, optional
Each will be applied to the iterable of tokens in order, and should return another iterable of tokens.
These filters can add, remove, or replace tokens, or do nothing at all.
If None - using :func:`~gensim.corpora.textcorpus.remove_short` and
:func:`~gensim.corpora.textcorpus.remove_stopwords`.
If None - using :func:`~gensim.parsing.preprocessing.remove_short_tokens` and
:func:`~gensim.parsing.preprocessing.remove_stopword_tokens`.

Examples
--------
Expand Down Expand Up @@ -254,7 +176,7 @@ def __init__(self, input=None, dictionary=None, metadata=False, character_filter

self.token_filters = token_filters
if self.token_filters is None:
self.token_filters = [remove_short, remove_stopwords]
self.token_filters = [remove_short_tokens, remove_stopword_tokens]

self.length = None
self.dictionary = None
Expand Down
95 changes: 91 additions & 4 deletions gensim/parsing/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,17 +68,20 @@
RE_WHITESPACE = re.compile(r"(\s)+", re.UNICODE)


def remove_stopwords(s):
def remove_stopwords(s, stopwords=None):
"""Remove :const:`~gensim.parsing.preprocessing.STOPWORDS` from `s`.

Parameters
----------
s : str
stopwords : iterable of str, optional
Sequence of stopwords
If None - using :const:`~gensim.parsing.preprocessing.STOPWORDS`

Returns
-------
str
Unicode string without :const:`~gensim.parsing.preprocessing.STOPWORDS`.
Unicode string without `stopwords`.

Examples
--------
Expand All @@ -90,7 +93,29 @@ def remove_stopwords(s):

"""
s = utils.to_unicode(s)
return " ".join(w for w in s.split() if w not in STOPWORDS)
return " ".join(remove_stopword_tokens(s.split(), stopwords))


def remove_stopword_tokens(tokens, stopwords=None):
rock420 marked this conversation as resolved.
Show resolved Hide resolved
"""Remove stopword tokens using list `stopwords`.

Parameters
----------
tokens : iterable of str
Sequence of tokens.
stopwords : iterable of str, optional
Sequence of stopwords
If None - using :const:`~gensim.parsing.preprocessing.STOPWORDS`

Returns
-------
list of str
List of tokens without `stopwords`.

"""
if stopwords is None:
stopwords = STOPWORDS
return [token for token in tokens if token not in stopwords]


def strip_punctuation(s):
Expand Down Expand Up @@ -172,7 +197,26 @@ def strip_short(s, minsize=3):

"""
s = utils.to_unicode(s)
return " ".join(e for e in s.split() if len(e) >= minsize)
return " ".join(remove_short_tokens(s.split(), minsize))


def remove_short_tokens(tokens, minsize=3):
"""Remove tokens shorter than `minsize` chars.

Parameters
----------
tokens : iterable of str
Sequence of tokens.
minsize : int, optimal
Minimal length of token (include).

Returns
-------
list of str
List of tokens without short tokens.
"""

return [token for token in tokens if len(token) >= minsize]


def strip_numeric(s):
Expand Down Expand Up @@ -310,6 +354,49 @@ def stem_text(text):
stem = stem_text


def lower_to_unicode(text, encoding='utf8', errors='strict'):
"""Lowercase `text` and convert to unicode, using :func:`gensim.utils.any2unicode`.

Parameters
----------
text : str
Input text.
encoding : str, optional
Encoding that will be used for conversion.
errors : str, optional
Error handling behaviour, used as parameter for `unicode` function (python2 only).

Returns
-------
str
Unicode version of `text`.

See Also
--------
:func:`gensim.utils.any2unicode`
Convert any string to unicode-string.

"""
return utils.to_unicode(text.lower(), encoding, errors)


def split_on_space(s):
"""Split line by spaces, used in :class:`gensim.corpora.lowcorpus.LowCorpus`.

Parameters
----------
s : str
Some line.

Returns
-------
list of str
List of tokens from `s`.

"""
return [word for word in utils.to_unicode(s).strip().split(' ') if word]


DEFAULT_FILTERS = [
lambda x: x.lower(), strip_tags, strip_punctuation,
strip_multiple_whitespaces, strip_numeric,
Expand Down
24 changes: 23 additions & 1 deletion gensim/test/test_parsing.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,10 @@
import logging
import unittest
import numpy as np
import gensim.parsing.preprocessing as preprocessing
from gensim.parsing.preprocessing import \
remove_stopwords, strip_punctuation2, strip_tags, strip_short, strip_numeric, strip_non_alphanum, \
strip_multiple_whitespaces, split_alphanum, stem_text
strip_multiple_whitespaces, split_alphanum, stem_text, remove_stopword_tokens, remove_short_tokens, split_on_space


# several documents
Expand Down Expand Up @@ -67,6 +68,27 @@ def test_split_alphanum(self):
def test_strip_stopwords(self):
self.assertEqual(remove_stopwords("the world is square"), "world square")

# confirm redifining the global `STOPWORDS` working
STOPWORDS = preprocessing.STOPWORDS
preprocessing.STOPWORDS = frozenset(["the"])
self.assertEqual(remove_stopwords("the world is square"), "world is square")
preprocessing.STOPWORDS = STOPWORDS

def test_strip_stopword_tokens(self):
self.assertEqual(remove_stopword_tokens(["the", "world", "is", "sphere"]), ["world", "sphere"])

# confirm redifining the global `STOPWORDS` working
STOPWORDS = preprocessing.STOPWORDS
preprocessing.STOPWORDS = frozenset(["the"])
self.assertEqual(remove_stopword_tokens(["the", "world", "is", "sphere"]), ["world", "is", "sphere"])
preprocessing.STOPWORDS = STOPWORDS

def test_strip_short_tokens(self):
self.assertEqual(remove_short_tokens(["salut", "les", "amis", "du", "59"], 3), ["salut", "les", "amis"])

def test_split_on_space(self):
self.assertEqual(split_on_space(" salut les amis du 59 "), ["salut", "les", "amis", "du", "59"])

def test_stem_text(self):
target = \
"while it is quit us to be abl to search a larg " + \
Expand Down