Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MRG] Lda training visualization in visdom #1399

Merged
merged 36 commits into from
Aug 30, 2017
Merged
Show file tree
Hide file tree
Changes from 30 commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
bb65439
save log params in a dict
parulsethi Jun 7, 2017
9d2e78d
remove redundant line
parulsethi Jun 7, 2017
33818ec
add diff log
parulsethi Jun 7, 2017
281222c
remove diff log
parulsethi Jun 8, 2017
c507bbb
write params to log directory
parulsethi Jun 8, 2017
6f75ccc
add convergence, remove alpha
parulsethi Jun 9, 2017
d9db4e2
calculate perplexity/diff instead of using log function
parulsethi Jun 9, 2017
cd5f822
add docstrings and comments
parulsethi Jun 9, 2017
f4728e0
add coherence/diff labels in graphs
parulsethi Jun 12, 2017
40cf092
Merge branch 'develop' of https://github.com/RaRe-Technologies/gensim…
parulsethi Jun 16, 2017
d4f69f5
optional measures for viz
parulsethi Jun 16, 2017
fde7d4d
add coherence params to lda init
parulsethi Jun 16, 2017
3f18076
added Lda Visom viz notebook
parulsethi Jun 26, 2017
546908e
add option to specify env
parulsethi Jun 26, 2017
651a61a
made requested changes
parulsethi Jun 28, 2017
13dfddc
Merge branch 'develop' of https://github.com/RaRe-Technologies/gensim…
parulsethi Jul 8, 2017
1376d90
add generic callback API
parulsethi Jul 8, 2017
44c8e58
modified Notebook for new API
parulsethi Jul 8, 2017
92949a3
fix flake8
parulsethi Jul 8, 2017
5b22e4d
correct lee corpus division
parulsethi Jul 12, 2017
c369fc5
added docstrings
parulsethi Jul 17, 2017
a32960d
fix flake8
parulsethi Jul 18, 2017
48526d9
add shell example
parulsethi Jul 18, 2017
adf2a60
fix queue import for both py2/py3
parulsethi Jul 19, 2017
a272090
store metrics in model instance
parulsethi Aug 2, 2017
d3389bb
add nb example for getting metrics after train
parulsethi Aug 3, 2017
96949f7
merge develop
parulsethi Aug 8, 2017
7d0f0ec
made rquested changes
parulsethi Aug 8, 2017
dcc64a1
use dict for saving metrics
parulsethi Aug 9, 2017
47434f9
use str method for metric classes
parulsethi Aug 10, 2017
30c9b64
correct a notebook description
parulsethi Aug 10, 2017
e55af47
remove child-classes str method
parulsethi Aug 10, 2017
df5e01f
made requested changes
parulsethi Aug 23, 2017
b334c50
Merge branch 'develop' into tensorboard_logs
parulsethi Aug 24, 2017
c54e6bf
add visdom screenshot
parulsethi Aug 24, 2017
5f3d902
Merge branch 'tensorboard_logs' of https://github.com/parulsethi/gens…
parulsethi Aug 24, 2017
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/notebooks/Coherence.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/notebooks/Convergence.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/notebooks/Diff.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/notebooks/Perplexity.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
319 changes: 319 additions & 0 deletions docs/notebooks/Training_visualizations.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,319 @@
{
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add an example with logger="shell" in notebook (and show logging output in notebook)

"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup Visdom\n",
"\n",
"Install it with:\n",
"\n",
"`pip install visdom`\n",
"\n",
"Start the server:\n",
"\n",
"`python -m visdom.server`\n",
"\n",
"Visdom now can be accessed at http://localhost:8097 in the browser.\n",
"\n",
"\n",
"# LDA Training Visualization\n",
"\n",
"To monitor the LDA training, a list of Metrics can be passed to the LDA function call for plotting their values live as the training progresses. \n",
"\n",
"Let's plot the training stats for an LDA model being trained on Lee corpus. We will use the four evaluation metrics available for topic models in gensim: Coherence, Perplexity, Topic diff and Convergence. (using separate hold_out and test corpus for evaluating the perplexity)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"import re\n",
"import gensim\n",
"from gensim.models import ldamodel\n",
"from gensim.corpora.dictionary import Dictionary\n",
"\n",
"\n",
"# Set file names for train and test data\n",
"test_data_dir = os.path.join(gensim.__path__[0], 'test', 'test_data')\n",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you use large dataset for this? (download from link in notebook)

"lee_train_file = os.path.join(test_data_dir, 'lee_background.cor')\n",
"lee_test_file = os.path.join(test_data_dir, 'lee.cor')\n",
"\n",
"def read_corpus(fname):\n",
" texts = []\n",
" with open(fname, encoding=\"ISO-8859-1\") as f:\n",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Don't work for python2 (because encoding isn't supported in python2), replace it to smart_open.

" for line in f:\n",
" # lower case all words\n",
" lowered = line.lower()\n",
" # remove punctuation and split into seperate words\n",
" words = re.compile('\\w+').findall(lowered)\n",
" texts.append(words)\n",
" return texts\n",
"\n",
"training_texts = read_corpus(lee_train_file)\n",
"eval_texts = read_corpus(lee_test_file)\n",
"\n",
"# Split test data into hold_out and test corpus\n",
"holdout_texts = eval_texts[:25]\n",
"test_texts = eval_texts[25:]\n",
"\n",
"training_dictionary = Dictionary(training_texts)\n",
"holdout_dictionary = Dictionary(holdout_texts)\n",
"test_dictionary = Dictionary(test_texts)\n",
"\n",
"training_corpus = [training_dictionary.doc2bow(text) for text in training_texts]\n",
"holdout_corpus = [holdout_dictionary.doc2bow(text) for text in holdout_texts]\n",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's 3 different mappings, mistake.

You should fit your Dictionary on training_texts and use it for all conversions (for holdout/test too)

"test_corpus = [test_dictionary.doc2bow(text) for text in test_texts]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true,
"scrolled": false
},
"outputs": [],
"source": [
"from gensim.models.callbacks import CoherenceMetric, DiffMetric, PerplexityMetric, ConvergenceMetric\n",
"\n",
"# define perplexity callback for hold_out and test corpus\n",
"pl_holdout = PerplexityMetric(corpus=holdout_corpus, logger=\"visdom\", title=\"Perplexity (hold_out)\")\n",
"pl_test = PerplexityMetric(corpus=test_corpus, logger=\"visdom\", title=\"Perplexity (test)\")\n",
"\n",
"# define other remaining metrics available\n",
"ch_umass = CoherenceMetric(corpus=training_corpus, coherence=\"u_mass\", logger=\"visdom\", title=\"Coherence (u_mass)\")\n",
"ch_cv = CoherenceMetric(corpus=training_corpus, texts=training_texts, coherence=\"c_v\", logger=\"visdom\", title=\"Coherence (c_v)\")\n",
"diff_kl = DiffMetric(distance=\"kullback_leibler\", logger=\"visdom\", title=\"Diff (kullback_leibler)\")\n",
"convergence_kl = ConvergenceMetric(distance=\"kullback_leibler\", logger=\"visdom\", title=\"Convergence (kullback_leibler)\")\n",
"\n",
"callbacks = [pl_holdout, pl_test, ch_umass, ch_cv, diff_kl, convergence_kl]\n",
"\n",
"# training LDA model\n",
"model = ldamodel.LdaModel(corpus=training_corpus, id2word=training_dictionary, passes=20, num_topics=5, eval_every=None, callbacks=callbacks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When the model is set for training, you can open http://localhost:8097 to see the training progress."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-0.259766196856\n"
]
}
],
"source": [
"# to get a metric value on a trained model\n",
"print(CoherenceMetric(corpus=training_corpus, coherence=\"u_mass\").get_value(model=model))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The four types of graphs which are plotted for LDA:\n",
"\n",
"**Coherence**\n",
"\n",
"Coherence measures are generally based on the idea of computing the sum of pairwise scores of top *n* top words w<sub>1</sub>, ...,w<sub>n</sub> used to describe the topic. There are four coherence measure available in gensim: `u_mass, c_v, c_uci, c_npmi`. A good model will generate coherent topics, i.e., topics with high topic coherence scores. Good topics can be described by a short label based on the topic terms they spit out. \n",
"\n",
"<img src=\"Coherence.gif\">\n",
"\n",
"Now, this graph along with the others explained below, can be used to decide if it's time to stop the training. We can see if the value stops changing after some epochs and that we are able to get the highest possible coherence of our model. \n",
"\n",
"\n",
"**Perplexity**\n",
"\n",
"Perplexity is a measurement of how well a probability distribution or probability model predicts a sample. In LDA, topics are described by a probability distribution over vocabulary words. So, perplexity can be used to evaluate the topic-term distribution output by LDA.\n",
"\n",
"<img src=\"Perplexity.gif\">\n",
"\n",
"For a good model, perplexity should be low.\n",
"\n",
"\n",
"**Topic Difference**\n",
"\n",
"Topic Diff calculates the distance between two LDA models. This distance is calculated based on the topics, by either using their probability distribution over vocabulary words (kullback_leibler, hellinger) or by simply using the common vocabulary words between the topics from both model.\n",
"\n",
"<img src=\"Diff.gif\">\n",
"\n",
"In the heatmap, X-axis define the Epoch no. and Y-axis define the distance between identical topics from consecutive epochs. For ex. a particular cell in the heatmap with values (x=3, y=5, z=0.4) represent the distance(=0.4) between the topic 5 from 3rd epoch and topic 5 from 2nd epoch. With increasing epochs, the distance between the identical topics should decrease.\n",
" \n",
" \n",
"**Convergence**\n",
"\n",
"Convergence is the sum of the difference between all the identical topics from two consecutive epochs. It is basically the sum of column values in the heatmap above.\n",
"\n",
"<img src=\"Convergence.gif\">\n",
"\n",
"The model is said to be converged when the convergence value stops descending with increasing epochs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training Logs\n",
"\n",
"We can also log the metric values after every epoch to the shell apart from visualizing them in Visdom. The only change is to define `logger=\"shell\"` instead of `\"visdom\"` in the input callbacks."
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you add an example on how to get the values out programatically (no logging or plotting, using them from arbitrary Python code instead)?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It can be done by using a loop to manually iterate over model and call metric classes at the end to store value:

model=LdaModel(passes=1)
perplexity=[]
for epoch in range(epochs):
    model.update(passes=1)
    pl = PerplexityMetric().get_value(model)
    perplexity.append(pl)

and sure, I'll add an example for this in notebook.

Copy link
Owner

@piskvorky piskvorky Jul 27, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks. Is there a way to use the callbacks in a way that they collect this info?

I'm thinking a type of "logger" that instead of logging, appends the value to some internal list. Which other parts of the app can read from.

The idea is the interface would be the same as for logger=visdom/shell, without a need for an explicit outer loop like in your example.

Is that possible?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes we can store them just after they are calculated in this step.

Maybe in a dict which could be an attribute of LdaModel? Structure could be:

metrics = {'PerplexityMetric':[val1, val2, ...], 'DiffMetric':[val1, val2, ...] }

on_epoch_end() can be made to return the metric values from current epoch which could then be appended in metrics dict after this step.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Used metrics dict to save values as described above

]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:gensim.models.ldamodel:using symmetric alpha at 0.2\n",
"INFO:gensim.models.ldamodel:using symmetric eta at 0.00013900472616068947\n",
"INFO:gensim.models.ldamodel:using serial LDA version on this node\n",
"INFO:gensim.models.ldamodel:running online (multi-pass) LDA training, 5 topics, 3 passes over the supplied corpus of 300 documents, updating model once every 300 documents, evaluating perplexity every 0 documents, iterating 50x with a convergence threshold of 0.001000\n",
"WARNING:gensim.models.ldamodel:too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n",
"INFO:gensim.models.ldamodel:PROGRESS: pass 0, at document #300/300\n",
"INFO:gensim.models.ldamodel:topic #0 (0.200): 0.051*\"the\" + 0.020*\"in\" + 0.019*\"to\" + 0.018*\"of\" + 0.015*\"a\" + 0.013*\"and\" + 0.011*\"is\" + 0.011*\"for\" + 0.009*\"he\" + 0.008*\"says\"\n",
"INFO:gensim.models.ldamodel:topic #1 (0.200): 0.048*\"the\" + 0.030*\"to\" + 0.022*\"in\" + 0.021*\"and\" + 0.020*\"a\" + 0.019*\"of\" + 0.010*\"s\" + 0.009*\"for\" + 0.008*\"that\" + 0.008*\"have\"\n",
"INFO:gensim.models.ldamodel:topic #2 (0.200): 0.023*\"the\" + 0.022*\"to\" + 0.018*\"of\" + 0.015*\"in\" + 0.013*\"and\" + 0.013*\"a\" + 0.007*\"is\" + 0.007*\"on\" + 0.006*\"that\" + 0.006*\"says\"\n",
"INFO:gensim.models.ldamodel:topic #3 (0.200): 0.072*\"the\" + 0.028*\"of\" + 0.024*\"to\" + 0.021*\"in\" + 0.021*\"a\" + 0.020*\"and\" + 0.010*\"he\" + 0.009*\"for\" + 0.009*\"is\" + 0.008*\"on\"\n",
"INFO:gensim.models.ldamodel:topic #4 (0.200): 0.066*\"the\" + 0.024*\"to\" + 0.018*\"of\" + 0.017*\"and\" + 0.015*\"in\" + 0.014*\"a\" + 0.010*\"has\" + 0.008*\"it\" + 0.008*\"s\" + 0.008*\"is\"\n",
"INFO:gensim.models.ldamodel:topic diff=2.058826, rho=1.000000\n",
"INFO:gensim.models.ldamodel:Epoch 0: Perplexity (hold_out) estimate: 400318.441165\n",
"INFO:gensim.models.ldamodel:Epoch 0: Perplexity (test) estimate: 1242745.72103\n",
"INFO:gensim.models.ldamodel:Epoch 0: Coherence estimate: -0.254109275924\n",
"INFO:gensim.models.ldamodel:Epoch 0: Diff estimate: [ 0.79628357 0.90363194 0.55469714 1. 0.86688377]\n",
"INFO:gensim.models.ldamodel:Epoch 0: Convergence estimate: 4.12149642523\n",
"INFO:gensim.models.ldamodel:PROGRESS: pass 1, at document #300/300\n",
"INFO:gensim.models.ldamodel:topic #0 (0.200): 0.046*\"the\" + 0.019*\"in\" + 0.017*\"to\" + 0.017*\"of\" + 0.014*\"a\" + 0.012*\"and\" + 0.012*\"is\" + 0.010*\"for\" + 0.008*\"he\" + 0.008*\"says\"\n",
"INFO:gensim.models.ldamodel:topic #1 (0.200): 0.048*\"the\" + 0.030*\"to\" + 0.022*\"in\" + 0.021*\"and\" + 0.019*\"a\" + 0.018*\"of\" + 0.010*\"s\" + 0.009*\"for\" + 0.008*\"have\" + 0.008*\"on\"\n",
"INFO:gensim.models.ldamodel:topic #2 (0.200): 0.016*\"to\" + 0.016*\"the\" + 0.013*\"of\" + 0.010*\"in\" + 0.010*\"and\" + 0.009*\"a\" + 0.005*\"says\" + 0.005*\"that\" + 0.005*\"on\" + 0.005*\"is\"\n",
"INFO:gensim.models.ldamodel:topic #3 (0.200): 0.071*\"the\" + 0.028*\"of\" + 0.025*\"to\" + 0.021*\"in\" + 0.021*\"a\" + 0.019*\"and\" + 0.010*\"he\" + 0.009*\"for\" + 0.008*\"is\" + 0.008*\"s\"\n",
"INFO:gensim.models.ldamodel:topic #4 (0.200): 0.062*\"the\" + 0.025*\"to\" + 0.017*\"of\" + 0.016*\"and\" + 0.014*\"a\" + 0.014*\"in\" + 0.010*\"has\" + 0.009*\"is\" + 0.008*\"it\" + 0.007*\"s\"\n",
"INFO:gensim.models.ldamodel:topic diff=0.567364, rho=0.577350\n",
"INFO:gensim.models.ldamodel:Epoch 1: Perplexity (hold_out) estimate: 231516.22057\n",
"INFO:gensim.models.ldamodel:Epoch 1: Perplexity (test) estimate: 666335.540876\n",
"INFO:gensim.models.ldamodel:Epoch 1: Coherence estimate: -0.248792041182\n",
"INFO:gensim.models.ldamodel:Epoch 1: Diff estimate: [ 0.83029118 0.72960219 1. 0.22719304 0.75709049]\n",
"INFO:gensim.models.ldamodel:Epoch 1: Convergence estimate: 3.54417690778\n",
"INFO:gensim.models.ldamodel:PROGRESS: pass 2, at document #300/300\n",
"INFO:gensim.models.ldamodel:topic #0 (0.200): 0.043*\"the\" + 0.019*\"in\" + 0.018*\"to\" + 0.016*\"of\" + 0.012*\"a\" + 0.012*\"is\" + 0.012*\"and\" + 0.009*\"for\" + 0.008*\"says\" + 0.007*\"he\"\n",
"INFO:gensim.models.ldamodel:topic #1 (0.200): 0.050*\"the\" + 0.029*\"to\" + 0.023*\"in\" + 0.021*\"and\" + 0.019*\"of\" + 0.018*\"a\" + 0.009*\"s\" + 0.009*\"for\" + 0.009*\"on\" + 0.008*\"he\"\n",
"INFO:gensim.models.ldamodel:topic #2 (0.200): 0.012*\"to\" + 0.012*\"the\" + 0.009*\"of\" + 0.008*\"and\" + 0.007*\"in\" + 0.007*\"a\" + 0.004*\"says\" + 0.004*\"have\" + 0.004*\"that\" + 0.003*\"on\"\n",
"INFO:gensim.models.ldamodel:topic #3 (0.200): 0.071*\"the\" + 0.027*\"of\" + 0.025*\"to\" + 0.021*\"in\" + 0.021*\"a\" + 0.019*\"and\" + 0.010*\"he\" + 0.009*\"for\" + 0.008*\"is\" + 0.008*\"s\"\n",
"INFO:gensim.models.ldamodel:topic #4 (0.200): 0.061*\"the\" + 0.025*\"to\" + 0.018*\"of\" + 0.015*\"and\" + 0.015*\"a\" + 0.014*\"in\" + 0.010*\"has\" + 0.009*\"is\" + 0.008*\"says\" + 0.007*\"it\"\n",
"INFO:gensim.models.ldamodel:topic diff=0.393123, rho=0.500000\n",
"INFO:gensim.models.ldamodel:Epoch 2: Perplexity (hold_out) estimate: 185972.72653\n",
"INFO:gensim.models.ldamodel:Epoch 2: Perplexity (test) estimate: 516819.885154\n",
"INFO:gensim.models.ldamodel:Epoch 2: Coherence estimate: -0.257564279899\n",
"INFO:gensim.models.ldamodel:Epoch 2: Diff estimate: [ 0.82668066 0.50774819 1. 0.19109239 0.50630086]\n",
"INFO:gensim.models.ldamodel:Epoch 2: Convergence estimate: 3.03182210104\n"
]
}
],
"source": [
"import logging\n",
"from gensim.models.callbacks import CoherenceMetric, DiffMetric, PerplexityMetric, ConvergenceMetric\n",
"\n",
"logging.basicConfig(level=logging.INFO)\n",
"logger = logging.getLogger(__name__)\n",
"logger.setLevel(logging.DEBUG)\n",
"\n",
"# define perplexity callback for hold_out and test corpus\n",
"pl_holdout = PerplexityMetric(corpus=holdout_corpus, logger=\"shell\", title=\"Perplexity (hold_out)\")\n",
"pl_test = PerplexityMetric(corpus=test_corpus, logger=\"shell\", title=\"Perplexity (test)\")\n",
"\n",
"# define other remaining metrics available\n",
"ch_umass = CoherenceMetric(corpus=training_corpus, coherence=\"u_mass\", logger=\"shell\")\n",
"diff_kl = DiffMetric(distance=\"kullback_leibler\", logger=\"shell\")\n",
"convergence_kl = ConvergenceMetric(distance=\"kullback_leibler\", logger=\"shell\")\n",
"\n",
"callbacks = [pl_holdout, pl_test, ch_umass, diff_kl, convergence_kl]\n",
"\n",
"# training LDA model\n",
"model = ldamodel.LdaModel(corpus=training_corpus, id2word=training_dictionary, passes=3, num_topics=5, eval_every=None, callbacks=callbacks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The metric values can also be accessed from the model instance for custom uses."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"defaultdict(list,\n",
" {'Coherence': [-0.25410927592387839,\n",
" -0.24879204118159887,\n",
" -0.25756427989868341],\n",
" 'Convergence': [4.1214964252266926,\n",
" 3.5441769077766914,\n",
" 3.031822101038804],\n",
" 'Diff': [array([ 0.79628357, 0.90363194, 0.55469714, 1. , 0.86688377]),\n",
" array([ 0.83029118, 0.72960219, 1. , 0.22719304, 0.75709049]),\n",
" array([ 0.82668066, 0.50774819, 1. , 0.19109239, 0.50630086])],\n",
" 'Perplexity (hold_out)': [400318.44116470998,\n",
" 231516.22056950352,\n",
" 185972.72652968348],\n",
" 'Perplexity (test)': [1242745.7210251174,\n",
" 666335.54087631544,\n",
" 516819.88515415508]})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.metrics"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading