Skip to content

Commit

Permalink
Merge pull request #1 from ERijck/pylint_fixes
Browse files Browse the repository at this point in the history
Pylint fixes
  • Loading branch information
ERijck authored Mar 21, 2023
2 parents c211cf0 + 7864ebc commit 9132451
Showing 1 changed file with 14 additions and 17 deletions.
31 changes: 14 additions & 17 deletions gensim/models/flsamodel.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,17 +65,18 @@
from abc import abstractmethod
from collections import Counter
import itertools
import warnings

import numpy as np
from scipy.sparse.linalg import svds
from scipy.sparse import dok_matrix

try:
from pyfume import Clustering
except ImportError as e:
except ImportError as import_error:
raise ImportError(
"FlsaModel requires pyfume; please install it with `pip install gensim[flsamodel]`"
)
) from import_error

import gensim.corpora as corpora
from gensim.models.coherencemodel import CoherenceModel
Expand Down Expand Up @@ -391,9 +392,6 @@ def _create_sparse_global_term_weights(
corpus,
word_to_index,
)
else:
raise ValueError(f'Unsupported word_weighting {word_weighting}')
#ERijck: This ValueError can be omitted, as it is an internal method. Do you agree?
return sparse_local_term_weights.multiply(global_term_weights).tocsc()

def _calculate_entropy(
Expand Down Expand Up @@ -679,9 +677,13 @@ def _create_partition_matrix(
The three clustering methods are:
1. fcm (Fuzzy C-Means)
(http://bitly.ws/zjs6)
(https://books.google.nl/books?hl=en&lr=&id=z6XqBwAAQBAJ&oi=fnd&pg=PR14&dq=).+Pattern+Recognition+with+
Fuzzy+Objective+Function+A&ots=0i1LtXGmKs&sig=2LYrg4sLhlRUYIQrMvKU0QwrGDw&redir_esc=y#v=onepage&q=).
%20Pattern%20Recognition%20with%20Fuzzy%20Objective%20Function%20A&f=false)
2. gk (Gustafson & Kessel)
(http://bitly.ws/zjsj)
(https://www.researchgate.net/profile/Donald-Gustafson/publication/224681053_Fuzzy_Clustering_with_a_
Fuzzy_Covariance_Matrix/links/567aa2cf08ae19758380fc22/Fuzzy-Clustering-with-a-Fuzzy-Covariance-Matrix.
pdf)
3. fst-pso (Fuzzy self-tuning particle swarm optimization)
(https://www.sciencedirect.com/science/article/pii/S2210650216303534)
Expand Down Expand Up @@ -901,8 +903,8 @@ def show_topics(
if not isinstance(num_words, int) or num_words <= 0:
raise TypeError("Please use a positive int for 'num_words'.")
if prob_word_given_topic.shape[0] < prob_word_given_topic.shape[1]:
raise ValueError("'prob_word_given_topic' has more columns then rows,",
" probably you need to take the transpose.") # FIXME What? Why?
warnings.warn("'prob_word_given_topic' has more columns then rows,",
" probably you need to take the transpose.")
#ERijck: A model with more topics than words makes no sense.
if prob_word_given_topic.shape[0] != len(index_to_word.keys()):
raise ValueError(
Expand Down Expand Up @@ -1322,10 +1324,7 @@ def __init__(
vector_size=20,
):

self.model = ... # FIXME what is this?
self.word_embedding = ... # FIXME what is this?
#ERijck: this way users can do post-analysis. But storing them as an attribute
# is not crucial.
self.word_embedding = None

super().__init__(
algorithm='flsa-e',
Expand Down Expand Up @@ -1359,15 +1358,13 @@ def get_word_embedding(
vector_size : int
Dimensionality of the word vectors.
"""
self.model = Word2Vec(
model = Word2Vec(
sentences=data,
vector_size=vector_size,
window=window,
min_count=min_count,
)
# FIXME is the whole Word2Vec model really needed? Why are we storing it as an attribute?
#ERijck: This way users can do a post analysis. However, it is not crucial and can be removed.
return self.model.wv.vectors
return model.wv.vectors

def _get_matrices(self):
"""
Expand Down

0 comments on commit 9132451

Please sign in to comment.