-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
from collections import defaultdict | ||
import math | ||
import unittest | ||
|
||
from gensim.models.bm25model import BM25ABC | ||
from gensim.models import OkapiBM25Model | ||
|
||
from gensim.corpora import Dictionary | ||
|
||
|
||
class BM25Stub(BM25ABC): | ||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
|
||
def precompute_idfs(self, dfs, num_docs): | ||
return dict() | ||
|
||
|
||
class BM25ABCTest(unittest.TestCase): | ||
def setUp(self): | ||
self.documents = [['cat', 'dog', 'mouse'], ['cat', 'lion'], ['cat', 'lion']] | ||
self.dictionary = Dictionary(self.documents) | ||
|
||
self.expected_avgdl = sum(map(len, self.documents)) / len(self.documents) | ||
|
||
def test_avgdl_from_corpus(self): | ||
corpus = list(map(self.dictionary.doc2bow, self.documents)) | ||
model = BM25Stub(corpus=corpus) | ||
actual_avgdl = model.avgdl | ||
self.assertAlmostEqual(self.expected_avgdl, actual_avgdl) | ||
|
||
def test_avgdl_from_dictionary(self): | ||
model = BM25Stub(dictionary=self.dictionary) | ||
actual_avgdl = model.avgdl | ||
self.assertAlmostEqual(self.expected_avgdl, actual_avgdl) | ||
|
||
|
||
class OkapiBM25ModelTest(unittest.TestCase): | ||
def setUp(self): | ||
self.documents = [['cat', 'dog', 'mouse'], ['cat', 'lion'], ['cat', 'lion']] | ||
self.dictionary = Dictionary(self.documents) | ||
self.k1, self.b, self.epsilon = 1.5, 0.75, 0.25 | ||
|
||
def get_idf(word): | ||
frequency = sum(map(lambda document: word in document, self.documents)) | ||
return math.log(len(self.documents) - frequency + 0.5) - math.log(frequency + 0.5) | ||
|
||
dog_idf = get_idf('dog') | ||
cat_idf = get_idf('cat') | ||
mouse_idf = get_idf('mouse') | ||
lion_idf = get_idf('lion') | ||
|
||
average_idf = (dog_idf + cat_idf + mouse_idf + lion_idf) / len(self.dictionary) | ||
eps = self.epsilon * average_idf | ||
|
||
self.expected_dog_idf = dog_idf if dog_idf > 0 else eps | ||
self.expected_cat_idf = cat_idf if cat_idf > 0 else eps | ||
self.expected_mouse_idf = mouse_idf if mouse_idf > 0 else eps | ||
self.expected_lion_idf = lion_idf if lion_idf > 0 else eps | ||
|
||
def test_idfs_from_corpus(self): | ||
corpus = list(map(self.dictionary.doc2bow, self.documents)) | ||
model = OkapiBM25Model(corpus=corpus, k1=self.k1, b=self.b, epsilon=self.epsilon) | ||
|
||
actual_dog_idf = model.idfs[self.dictionary.token2id['dog']] | ||
actual_cat_idf = model.idfs[self.dictionary.token2id['cat']] | ||
actual_mouse_idf = model.idfs[self.dictionary.token2id['mouse']] | ||
actual_lion_idf = model.idfs[self.dictionary.token2id['lion']] | ||
|
||
self.assertAlmostEqual(self.expected_dog_idf, actual_dog_idf) | ||
self.assertAlmostEqual(self.expected_cat_idf, actual_cat_idf) | ||
self.assertAlmostEqual(self.expected_mouse_idf, actual_mouse_idf) | ||
self.assertAlmostEqual(self.expected_lion_idf, actual_lion_idf) | ||
|
||
def test_idfs_from_dictionary(self): | ||
model = OkapiBM25Model(dictionary=self.dictionary, k1=self.k1, b=self.b, epsilon=self.epsilon) | ||
|
||
actual_dog_idf = model.idfs[self.dictionary.token2id['dog']] | ||
actual_cat_idf = model.idfs[self.dictionary.token2id['cat']] | ||
actual_mouse_idf = model.idfs[self.dictionary.token2id['mouse']] | ||
actual_lion_idf = model.idfs[self.dictionary.token2id['lion']] | ||
|
||
self.assertAlmostEqual(self.expected_dog_idf, actual_dog_idf) | ||
self.assertAlmostEqual(self.expected_cat_idf, actual_cat_idf) | ||
self.assertAlmostEqual(self.expected_mouse_idf, actual_mouse_idf) | ||
self.assertAlmostEqual(self.expected_lion_idf, actual_lion_idf) | ||
|
||
def test_score(self): | ||
model = OkapiBM25Model(dictionary=self.dictionary, k1=self.k1, b=self.b, epsilon=self.epsilon) | ||
|
||
first_document = self.documents[0] | ||
first_bow = self.dictionary.doc2bow(first_document) | ||
weights = defaultdict(lambda: 0.0) | ||
weights.update(model[first_bow]) | ||
|
||
actual_dog_weight = weights[self.dictionary.token2id['dog']] | ||
actual_cat_weight = weights[self.dictionary.token2id['cat']] | ||
actual_mouse_weight = weights[self.dictionary.token2id['mouse']] | ||
actual_lion_weight = weights[self.dictionary.token2id['lion']] | ||
|
||
def get_expected_weight(word): | ||
idf = model.idfs[self.dictionary.token2id[word]] | ||
numerator = self.k1 + 1 | ||
denominator = 1 + self.k1 * (1 - self.b + self.b * len(first_document) / model.avgdl) | ||
return idf * numerator / denominator | ||
|
||
expected_dog_weight = get_expected_weight('dog') if 'dog' in first_document else 0.0 | ||
expected_cat_weight = get_expected_weight('cat') if 'cat' in first_document else 0.0 | ||
expected_mouse_weight = get_expected_weight('mouse') if 'mouse' in first_document else 0.0 | ||
expected_lion_weight = get_expected_weight('lion') if 'lion' in first_document else 0.0 | ||
|
||
self.assertAlmostEqual(expected_dog_weight, actual_dog_weight) | ||
self.assertAlmostEqual(expected_cat_weight, actual_cat_weight) | ||
self.assertAlmostEqual(expected_mouse_weight, actual_mouse_weight) | ||
self.assertAlmostEqual(expected_lion_weight, actual_lion_weight) |