-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
102 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
"""This module implements functionality related to the `Okapi Best Matching | ||
<https://en.wikipedia.org/wiki/Okapi_BM25>`_ class of bag-of-words vector space models. | ||
""" | ||
|
||
from abc import ABCMeta, abstractmethod | ||
from collections import defaultdict | ||
import logging | ||
import math | ||
|
||
from gensim import interfaces, utils | ||
import numpy as np | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class BM25ABC(interfaces.TransformationABC, metaclass=ABCMeta): | ||
def __init__(self, corpus=None, dictionary=None): | ||
self.avgdl, self.idfs = None, None | ||
if dictionary: | ||
if corpus: | ||
logger.warning("constructor received both corpus and dictionary; ignoring the corpus") | ||
self.initialize_from_dictionary(dictionary) | ||
elif corpus: | ||
self.initialize_from_corpus(corpus) | ||
else: | ||
pass | ||
|
||
def initialize_from_dictionary(self, dictionary): | ||
num_tokens = sum(dictionary.cfs.values()) | ||
self.avgdl = num_tokens / dictionary.num_docs | ||
self.idfs = self.precompute_idfs(dictionary.dfs, dictionary.num_docs) | ||
|
||
def initialize_from_corpus(self, corpus): | ||
dfs = defaultdict(lambda: list()) | ||
num_tokens = 0 | ||
num_docs = 0 | ||
for bow in corpus: | ||
num_tokens += len(bow) | ||
for term_id in set(term_id for term_id, _ in bow): | ||
dfs[term_id] += 1 | ||
num_docs += 1 | ||
self.avgdl = num_tokens / num_docs | ||
self.idfs = self.precompute_idfs(dfs, num_docs) | ||
|
||
@abstractmethod | ||
def precompute_idfs(self, dfs, num_docs): | ||
pass | ||
|
||
|
||
class OkapiBM25Model(BM25ABC): | ||
def __init__(self, corpus=None, dictionary=None, k1=1.5, b=0.75, epsilon=0.25): | ||
self.k1, self.b, self.epsilon = k1, b, epsilon | ||
super().__init__(corpus, dictionary) | ||
|
||
def precompute_idfs(self, dfs, num_docs): | ||
idf_sum = 0 | ||
idfs = dict() | ||
negative_idfs = [] | ||
for term_id, freq in dfs.items(): | ||
idf = math.log(num_docs - freq + 0.5) - math.log(freq + 0.5) | ||
idfs[term_id] = idf | ||
idf_sum += idf | ||
if idf < 0: | ||
negative_idfs.append(term_id) | ||
average_idf = idf_sum / len(idfs) | ||
|
||
eps = self.epsilon * average_idf | ||
for term_id in negative_idfs: | ||
idfs[term_id] = eps | ||
|
||
return idfs | ||
|
||
def __getitem__(self, bow, eps=1e-12): | ||
self.eps = eps | ||
|
||
is_corpus, bow = utils.is_corpus(bow) | ||
if is_corpus: | ||
return self._apply(bow) | ||
|
||
term_ids, term_frequencies, idfs = [], [], [] | ||
for term_id, term_frequency in bow: | ||
term_ids.append(term_id) | ||
term_frequencies.append(term_frequency) | ||
idfs.append(self.idf.get(term_id) or 0.0) | ||
term_frequencies = np.array(term_frequencies) | ||
idfs = np.array(idfs) | ||
|
||
term_weights = idfs * (term_frequencies * (self.k1 + 1) | ||
/ (term_frequencies + self.k1 * (1 - self.b + self.b | ||
* len(bow) / self.avgdl))) | ||
|
||
vector = [ | ||
(term_id, float(weight)) | ||
for term_id, weight | ||
in zip(term_ids, term_weights) | ||
] | ||
return vector |