Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

#1496 replace np.product by np.prod everywhere #1497

Merged
merged 2 commits into from
Oct 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ All notable changes to this project will be documented in this file.
- [#1424](https://github.com/pints-team/pints/pull/1424) Removed the `TriangleWaveTransform` class previously used in some optimisers.

### Fixed
- [#1497](https://github.com/pints-team/pints/pull/1497) Fixed deprecation warning of `np.product` globally in pints.
- [#1457](https://github.com/pints-team/pints/pull/1457) Fixed typo in deprecation warning for `UnknownNoiseLikelihood`.
- [#1455](https://github.com/pints-team/pints/pull/1455) The `s` and `inv_s` properties of `ScalingTransformation` have been replaced with private properties `_s` and `_inv_s`.
- [#1450](https://github.com/pints-team/pints/pull/1450) Made `TransformedBoundaries` consistent with `Boundaries` by removing `range()` and adding `sample()`.
Expand Down
2 changes: 1 addition & 1 deletion pints/_error_measures.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ class MeanSquaredError(ProblemErrorMeasure):
"""
def __init__(self, problem, weights=None):
super(MeanSquaredError, self).__init__(problem)
self._ninv = 1.0 / np.product(self._values.shape)
self._ninv = 1.0 / np.prod(self._values.shape)

if weights is None:
weights = [1] * self._n_outputs
Expand Down
2 changes: 1 addition & 1 deletion pints/_log_likelihoods.py
Original file line number Diff line number Diff line change
Expand Up @@ -1120,7 +1120,7 @@ def __init__(self, log_likelihood):
self._log_likelihood = log_likelihood

# Pre-calculate parts
self._f = 1.0 / np.product(self._values.shape)
self._f = 1.0 / np.prod(self._values.shape)

def __call__(self, x):
return self._f * self._log_likelihood(x)
Expand Down
2 changes: 1 addition & 1 deletion pints/_log_priors.py
Original file line number Diff line number Diff line change
Expand Up @@ -1245,7 +1245,7 @@ def __init__(self, lower_or_boundaries, upper=None):
# Use normalised value (1/area) for rectangular boundaries,
# otherwise just use 1.
if isinstance(self._boundaries, pints.RectangularBoundaries):
self._value = -np.log(np.product(self._boundaries.range()))
self._value = -np.log(np.prod(self._boundaries.range()))
else:
self._value = 1

Expand Down
6 changes: 3 additions & 3 deletions pints/_mcmc/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ def __init__(self, x0, sigma0=None):
self._sigma0 = np.diag(0.01 * self._sigma0)
else:
self._sigma0 = np.array(sigma0, copy=True)
if np.product(self._sigma0.shape) == self._n_parameters:
if np.prod(self._sigma0.shape) == self._n_parameters:
# Convert from 1d array
self._sigma0 = self._sigma0.reshape((self._n_parameters,))
self._sigma0 = np.diag(self._sigma0)
Expand Down Expand Up @@ -192,7 +192,7 @@ def __init__(self, chains, x0, sigma0=None):
self._sigma0 = np.diag(0.01 * self._sigma0)
else:
self._sigma0 = np.array(sigma0, copy=True)
if np.product(self._sigma0.shape) == self._n_parameters:
if np.prod(self._sigma0.shape) == self._n_parameters:
# Convert from 1d array
self._sigma0 = self._sigma0.reshape((self._n_parameters,))
self._sigma0 = np.diag(self._sigma0)
Expand Down Expand Up @@ -352,7 +352,7 @@ def __init__(
else:
n_parameters = log_pdf[0].n_parameters()
# Make sure sigma0 is a (covariance) matrix
if np.product(sigma0.shape) == n_parameters:
if np.prod(sigma0.shape) == n_parameters:
# Convert from 1d array
sigma0 = sigma0.reshape((n_parameters,))
sigma0 = np.diag(sigma0)
Expand Down
2 changes: 1 addition & 1 deletion pints/_optimisers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1125,7 +1125,7 @@ def __init__(self, function, dimension, x, y):
self.d = dimension
self.x = x
self.y = y
self.n = 1 / np.product(y.shape) # Total number of points in data
self.n = 1 / np.prod(y.shape) # Total number of points in data

def n_parameters(self):
return self.d
Expand Down
4 changes: 2 additions & 2 deletions pints/tests/test_log_priors.py
Original file line number Diff line number Diff line change
Expand Up @@ -1081,7 +1081,7 @@ def test_uniform_prior(self):
self.assertEqual(p([10, 10]), m)
self.assertEqual(p([5, 20]), m)

w = -np.log(np.product(upper - lower))
w = -np.log(np.prod(upper - lower))
self.assertEqual(p([1, 2]), w)
self.assertEqual(p([1, 5]), w)
self.assertEqual(p([1, 20 - 1e-14]), w)
Expand Down Expand Up @@ -1110,7 +1110,7 @@ def test_uniform_prior(self):
self.assertEqual(p([10, 10]), m)
self.assertEqual(p([5, 20]), m)

w = -np.log(np.product(upper - lower))
w = -np.log(np.prod(upper - lower))
self.assertEqual(p([1, 2]), w)
self.assertEqual(p([1, 5]), w)
self.assertEqual(p([1, 20 - 1e-14]), w)
Expand Down