Skip to content

Commit

Permalink
Add Signed and TruncatedDivision typeclasses
Browse files Browse the repository at this point in the history
Partially merges typelevel/algebra#247
  • Loading branch information
armanbilge authored and pikinier20 committed Oct 25, 2021
1 parent e46e446 commit 8ffb393
Show file tree
Hide file tree
Showing 3 changed files with 247 additions and 2 deletions.
11 changes: 9 additions & 2 deletions algebra-core/src/main/scala/algebra/instances/bigInt.scala
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,9 @@ import algebra.ring._
package object bigInt extends BigIntInstances

trait BigIntInstances extends cats.kernel.instances.BigIntInstances {
implicit val bigIntAlgebra: BigIntAlgebra =
new BigIntAlgebra
implicit val bigIntAlgebra: BigIntAlgebra = new BigIntTruncatedDivison
implicit def bigIntTruncatedDivision: TruncatedDivision[BigInt] =
bigIntAlgebra.asInstanceOf[BigIntTruncatedDivison] // Bin-compat hack to avoid allocation
}

class BigIntAlgebra extends EuclideanRing[BigInt] with Serializable {
Expand Down Expand Up @@ -54,3 +55,9 @@ class BigIntAlgebra extends EuclideanRing[BigInt] with Serializable {
}

}

class BigIntTruncatedDivison extends BigIntAlgebra with TruncatedDivision.forCommutativeRing[BigInt] {
override def tquot(x: BigInt, y: BigInt): BigInt = x / y
override def tmod(x: BigInt, y: BigInt): BigInt = x % y
override def order: Order[BigInt] = cats.kernel.instances.bigInt.catsKernelStdOrderForBigInt
}
152 changes: 152 additions & 0 deletions algebra-core/src/main/scala/algebra/ring/Signed.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
package algebra.ring

import algebra.{CommutativeMonoid, Eq, Order}

import scala.{specialized => sp}

/**
* A trait that expresses the existence of signs and absolute values on linearly ordered additive commutative monoids
* (i.e. types with addition and a zero).
*
* The following laws holds:
*
* (1) if `a <= b` then `a + c <= b + c` (linear order),
* (2) `signum(x) = -1` if `x < 0`, `signum(x) = 1` if `x > 0`, `signum(x) = 0` otherwise,
*
* Negative elements only appear when the scalar is taken from a additive abelian group. Then:
*
* (3) `abs(x) = -x` if `x < 0`, or `x` otherwise,
*
* Laws (1) and (2) lead to the triange inequality:
*
* (4) `abs(a + b) <= abs(a) + abs(b)`
*
* Signed should never be extended in implementations, rather the [[Signed.forAdditiveCommutativeMonoid]] and
* [[Signed.forAdditiveCommutativeGroup subtraits]].
*
* It's better to have the Signed hierarchy separate from the Ring/Order hierarchy, so that
* we do not end up with duplicate implicits.
*/
trait Signed[@sp(Byte, Short, Int, Long, Float, Double) A] extends Any {

def additiveCommutativeMonoid: AdditiveCommutativeMonoid[A]
def order: Order[A]

/**
* Returns Zero if `a` is 0, Positive if `a` is positive, and Negative is `a` is negative.
*/
def sign(a: A): Signed.Sign = Signed.Sign(signum(a))

/**
* Returns 0 if `a` is 0, 1 if `a` is positive, and -1 is `a` is negative.
*/
def signum(a: A): Int

/**
* An idempotent function that ensures an object has a non-negative sign.
*/
def abs(a: A): A

def isSignZero(a: A): Boolean = signum(a) == 0
def isSignPositive(a: A): Boolean = signum(a) > 0
def isSignNegative(a: A): Boolean = signum(a) < 0

def isSignNonZero(a: A): Boolean = signum(a) != 0
def isSignNonPositive(a: A): Boolean = signum(a) <= 0
def isSignNonNegative(a: A): Boolean = signum(a) >= 0
}

trait SignedFunctions[S[T] <: Signed[T]] extends cats.kernel.OrderFunctions[Order] {
def sign[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Signed.Sign =
ev.sign(a)
def signum[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Int =
ev.signum(a)
def abs[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): A =
ev.abs(a)
def isSignZero[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Boolean =
ev.isSignZero(a)
def isSignPositive[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Boolean =
ev.isSignPositive(a)
def isSignNegative[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Boolean =
ev.isSignNegative(a)
def isSignNonZero[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Boolean =
ev.isSignNonZero(a)
def isSignNonPositive[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Boolean =
ev.isSignNonPositive(a)
def isSignNonNegative[@sp(Int, Long, Float, Double) A](a: A)(implicit ev: S[A]): Boolean =
ev.isSignNonNegative(a)
}

object Signed extends SignedFunctions[Signed] {

/**
* Signed implementation for additive commutative monoids
*/
trait forAdditiveCommutativeMonoid[A] extends Any with Signed[A] with AdditiveCommutativeMonoid[A] {
final override def additiveCommutativeMonoid = this
def signum(a: A): Int = {
val c = order.compare(a, zero)
if (c < 0) -1
else if (c > 0) 1
else 0
}
}

/**
* Signed implementation for additive commutative groups
*/
trait forAdditiveCommutativeGroup[A]
extends Any
with forAdditiveCommutativeMonoid[A]
with AdditiveCommutativeGroup[A] {
def abs(a: A): A = if (order.compare(a, zero) < 0) negate(a) else a
}

def apply[A](implicit s: Signed[A]): Signed[A] = s

/**
* A simple ADT representing the `Sign` of an object.
*/
sealed abstract class Sign(val toInt: Int) {
def unary_- : Sign = this match {
case Positive => Negative
case Negative => Positive
case Zero => Zero
}

def *(that: Sign): Sign = Sign(this.toInt * that.toInt)

def **(that: Int): Sign = this match {
case Positive => Positive
case Zero if that == 0 => Positive
case Zero => Zero
case Negative if (that % 2) == 0 => Positive
case Negative => Negative
}
}

case object Zero extends Sign(0)
case object Positive extends Sign(1)
case object Negative extends Sign(-1)

object Sign {
implicit def sign2int(s: Sign): Int = s.toInt

def apply(i: Int): Sign =
if (i == 0) Zero else if (i > 0) Positive else Negative

private val instance: CommutativeMonoid[Sign] with MultiplicativeCommutativeMonoid[Sign] with Eq[Sign] =
new CommutativeMonoid[Sign] with MultiplicativeCommutativeMonoid[Sign] with Eq[Sign] {
def eqv(x: Sign, y: Sign): Boolean = x == y
def empty: Sign = Positive
def combine(x: Sign, y: Sign): Sign = x * y
def one: Sign = Positive
def times(x: Sign, y: Sign): Sign = x * y
}

implicit final def signMultiplicativeMonoid: MultiplicativeCommutativeMonoid[Sign] = instance
implicit final def signMonoid: CommutativeMonoid[Sign] = instance
implicit final def signEq: Eq[Sign] = instance
}

}
86 changes: 86 additions & 0 deletions algebra-core/src/main/scala/algebra/ring/TruncatedDivision.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
package algebra.ring

import scala.{specialized => sp}

/**
* Division and modulus for computer scientists
* taken from https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf
*
* For two numbers x (dividend) and y (divisor) on an ordered ring with y != 0,
* there exists a pair of numbers q (quotient) and r (remainder)
* such that these laws are satisfied:
*
* (1) q is an integer
* (2) x = y * q + r (division rule)
* (3) |r| < |y|,
* (4t) r = 0 or sign(r) = sign(x),
* (4f) r = 0 or sign(r) = sign(y).
*
* where sign is the sign function, and the absolute value
* function |x| is defined as |x| = x if x >=0, and |x| = -x otherwise.
*
* We define functions tmod and tquot such that:
* q = tquot(x, y) and r = tmod(x, y) obey rule (4t),
* (which truncates effectively towards zero)
* and functions fmod and fquot such that:
* q = fquot(x, y) and r = fmod(x, y) obey rule (4f)
* (which floors the quotient and effectively rounds towards negative infinity).
*
* Law (4t) corresponds to ISO C99 and Haskell's quot/rem.
* Law (4f) is described by Knuth and used by Haskell,
* and fmod corresponds to the REM function of the IEEE floating-point standard.
*/
trait TruncatedDivision[@sp(Byte, Short, Int, Long, Float, Double) A] extends Any with Signed[A] {
def tquot(x: A, y: A): A
def tmod(x: A, y: A): A
def tquotmod(x: A, y: A): (A, A) = (tquot(x, y), tmod(x, y))

def fquot(x: A, y: A): A
def fmod(x: A, y: A): A
def fquotmod(x: A, y: A): (A, A) = (fquot(x, y), fmod(x, y))
}

trait TruncatedDivisionFunctions[S[T] <: TruncatedDivision[T]] extends SignedFunctions[S] {
def tquot[@sp(Int, Long, Float, Double) A](x: A, y: A)(implicit ev: TruncatedDivision[A]): A =
ev.tquot(x, y)
def tmod[@sp(Int, Long, Float, Double) A](x: A, y: A)(implicit ev: TruncatedDivision[A]): A =
ev.tmod(x, y)
def tquotmod[@sp(Int, Long, Float, Double) A](x: A, y: A)(implicit ev: TruncatedDivision[A]): (A, A) =
ev.tquotmod(x, y)
def fquot[@sp(Int, Long, Float, Double) A](x: A, y: A)(implicit ev: TruncatedDivision[A]): A =
ev.fquot(x, y)
def fmod[@sp(Int, Long, Float, Double) A](x: A, y: A)(implicit ev: TruncatedDivision[A]): A =
ev.fmod(x, y)
def fquotmod[@sp(Int, Long, Float, Double) A](x: A, y: A)(implicit ev: TruncatedDivision[A]): (A, A) =
ev.fquotmod(x, y)
}

object TruncatedDivision extends TruncatedDivisionFunctions[TruncatedDivision] {
trait forCommutativeRing[@sp(Byte, Short, Int, Long, Float, Double) A]
extends Any
with TruncatedDivision[A]
with Signed.forAdditiveCommutativeGroup[A]
with CommutativeRing[A] { self =>

def fmod(x: A, y: A): A = {
val tm = tmod(x, y)
if (signum(tm) == -signum(y)) plus(tm, y) else tm
}

def fquot(x: A, y: A): A = {
val (tq, tm) = tquotmod(x, y)
if (signum(tm) == -signum(y)) minus(tq, one) else tq
}

override def fquotmod(x: A, y: A): (A, A) = {
val (tq, tm) = tquotmod(x, y)
val signsDiffer = signum(tm) == -signum(y)
val fq = if (signsDiffer) minus(tq, one) else tq
val fm = if (signsDiffer) plus(tm, y) else tm
(fq, fm)
}

}

def apply[A](implicit ev: TruncatedDivision[A]): TruncatedDivision[A] = ev
}

0 comments on commit 8ffb393

Please sign in to comment.