Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update our citation list #25

Merged
merged 1 commit into from
Sep 5, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion LIST_OF_CITATIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,4 +56,6 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. A.L. D’Almeida, N.C.R. Bergiante, G.S. Ferreira, F.R. Leta, C.B.C. Lima, G.B.A. Lima. Digital transformation: a review on artificial intelligence techniques in drilling and production applications. The International Journal of Advanced Manufacturing Technology. 2022. https://doi.org/10.1007/s00170-021-08631-w.

1. A.P.F. Machado, R.E.V. Vargas, P.M. Ciarelli, C.J. Munaro. Improving performance of one-class classifiers applied to anomaly detection in oil wells. Journal of Petroleum Science and Engineering. 2022. https://doi.org/10.1016/j.petrol.2022.110983.
1. A.P.F. Machado, R.E.V. Vargas, P.M. Ciarelli, C.J. Munaro. Improving performance of one-class classifiers applied to anomaly detection in oil wells. Journal of Petroleum Science and Engineering. 2022. https://doi.org/10.1016/j.petrol.2022.110983.

1. N. Aslam, I.U. Khan, A. Alansari, M. Alrammah, A. Alghwairy, R. Alqahtani, R. Alqahtani, M. Almushikes, M.A. Hashim. Anomaly Detection Using Explainable Random Forest for the Prediction of Undesirable Events in Oil Wells. Applied Computational Intelligence and Soft Computing. 2022. https://doi.org/10.1155/2022/1558381.