Helper functions for Prediktor Map Services
Helper functions for communicating with Prediktors OPC UA ModelIndex REST-API and OPC UA Values REST-API. Typically used for data anlytics purposes, you'll find Jypiter Notebooks with examples in the notebooks folder.
Install is primarily done through PyPi with pip install pyPrediktorMapClient
. If you want to contribute or need
run the Jupyter Notebooks in the notebooks
folder locally, please clone this repository.
Example:
from pyprediktormapclient.model_index import ModelIndex
from pyprediktormapclient.opc_ua import OPC_UA
model = ModelIndex(url=your_model_index_url)
tsdata = OPC_UA(rest_url=your_opcua_rest_url, opcua_url=your_opcua_server_uri)
obj_types = model.get_object_types()
Further information, documentation and module reference on the documentation site and check out the jypiter notebooks in the notebooks folder.
- First clone the repository and navigate to the main folder of repository.
git clone git@github.com:PrediktorAS/pyPrediktorMapClient.git
- Create Virtual environment
python3 -m venv .venv
source .venv/bin/activate
- Install dependencies As this is a python package, dependencies are in setyp.py (actually in setup.cfg, as this is a pyScaffold project). Requirements.txt will perform the correct installation and add a couple of additional packages
pip install -r requirements.txt
- Run tests
tox
- Do your changes Add whatever you need and create PRs to be approved
- Build
tox -e build
- Publish to PyPi test and live
tox -e publish
tox -e publish -- --repository pypi