Skip to content

Commit

Permalink
small fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
pbiecek committed Apr 20, 2024
1 parent 6f44b72 commit 1849251
Show file tree
Hide file tree
Showing 5 changed files with 12 additions and 41 deletions.
22 changes: 11 additions & 11 deletions 19-redteam.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
#### Red-Teaming SAM {-}

<div>
<img src="images/redteaming_sam.png">
<img src="images/redteaming_sam.png" align="left">
<a href="https://doi.org/10.48550/arXiv.2404.02067">Red-Teaming Segment Anything Model</a>
<p> Krzysztof Jankowski, Bartlomiej Sobieski, Mateusz Kwiatkowski, Jakub Szulc, Michal Janik, Hubert Baniecki, Przemyslaw Biecek</p>
<p><strong>CVPR Workshops (2024)</strong></p>
Expand All @@ -22,7 +22,7 @@ The Segment Anything Model is one of the first and most well-known foundation mo
#### Red-Teaming HSI {-}

<div>
<img src="images/redteaming_hsi.png">
<img src="images/redteaming_hsi.png" align="left">
<a href="https://doi.org/10.48550/arXiv.2403.08017">Red Teaming Models for Hyperspectral Image Analysis Using Explainable AI</a>
<p> Vladimir Zaigrajew, Hubert Baniecki, Lukasz Tulczyjew, Agata M. Wijata, Jakub Nalepa, Nicolas Longépé, Przemyslaw Biecek</p>
<p><strong>ICLR Workshops (2024)</strong></p>
Expand All @@ -32,7 +32,7 @@ Remote sensing applications require machine learning models that are reliable an
#### Adversarial attacks and defenses for XAI {-}

<div>
<img src="images/advxai.png">
<img src="images/advxai.png" align="left">
<a href="https://doi.org/10.1016/j.inffus.2024.102303">Adversarial attacks and defenses in explainable artificial intelligence: A survey</a>
<p> Hubert Baniecki, Przemysław Biecek</p>
<p><strong>Information Fusion (2024)</strong></p>
Expand All @@ -42,7 +42,7 @@ Explanations of machine learning models can be manipulated. We introduce a unifi
#### Software: survex {-}

<div>
<img src="images/survex.png">
<img src="images/survex.png" align="left">
<a href="https://doi.org/10.1093/bioinformatics/btad723">survex: an R package for explaining machine learning survival models</a>
<p> Mikołaj Spytek, Mateusz Krzyziński, Sophie Hanna Langbein, Hubert Baniecki, Marvin N Wright, Przemysław Biecek</p>
<p><strong>Bioinformatics (2023)</strong></p>
Expand All @@ -52,7 +52,7 @@ This paper demonstrates the functionalities of the <a href="https://github.com/M
#### SurvSHAP(t) {-}

<div>
<img src="images/paper_survshap.png">
<img src="images/paper_survshap.png" align="left">
<a href="https://doi.org/10.1016/j.knosys.2022.110234 ">SurvSHAP(t): Time-dependent explanations of machine learning survival models</a>
<p>Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek</p>
<p><strong>Knowledge-Based Systems (2023)</strong></p>
Expand All @@ -62,7 +62,7 @@ In this paper, we introduce SurvSHAP(t), the first time-dependent explanation th
#### IEMA {-}

<div>
<img src="images/paper_iema.png">
<img src="images/paper_iema.png" align="left">
<a href="https://doi.org/10.1007/s10618-023-00924-w ">The grammar of interactive explanatory model analysis</a>
<p>Hubert Baniecki, Dariusz Parzych, Przemyslaw Biecek</p>
<p><strong>Data Mining and Knowledge Discovery (2023)</strong></p>
Expand All @@ -72,7 +72,7 @@ This paper proposes how different Explanatory Model Analysis (EMA) methods compl
#### Software: fairmodels {-}

<div>
<img src="images/mini_fairmodels.png">
<img src="images/mini_fairmodels.png" align="left">
<a href="http://doi.org/10.32614/RJ-2022-019">fairmodels: a Flexible Tool for Bias Detection, Visualization, and Mitigation in Binary Classification Models</a>
<p>Jakub Wiśniewski, Przemyslaw Biecek</p>
<p><strong>The R Journal (2022)</strong></p>
Expand All @@ -82,7 +82,7 @@ This article introduces an R package fairmodels that helps to validate fairness
#### Fooling PDP {-}

<div>
<img src="images/foolingpd.png">
<img src="images/foolingpd.png" align="left">
<a href="https://doi.org/10.1007/978-3-031-26409-2_8">Fooling Partial Dependence via Data Poisoning</a>
<p>Hubert Baniecki, Wojciech Kretowicz, Przemyslaw Biecek</p>
<p><strong>ECML PKDD (2022)</strong></p>
Expand All @@ -92,7 +92,7 @@ We showcase that PD can be manipulated in an adversarial manner, which is alarmi
#### Fooling SHAP {-}

<div>
<img src="images/manipulatingshap.png">
<img src="images/manipulatingshap.png" align="left">
<a href="https://doi.org/10.1609/aaai.v36i11.21590">Manipulating SHAP via Adversarial Data Perturbations (Student Abstract)</a>
<p>Hubert Baniecki, Przemyslaw Biecek</p>
<p><strong>AAAI Conference on Artificial Intelligence (2022)</strong></p>
Expand All @@ -103,7 +103,7 @@ We introduce a model-agnostic algorithm for manipulating SHapley Additive exPlan
#### Models in the Wild {-}

<div>
<img src="images/paper_wildnlp.png">
<img src="images/paper_wildnlp.png" align="left">
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-36718-3_20">Models in the Wild: On Corruption Robustness of Neural NLP Systems</a>
<p>Barbara Rychalska, Dominika Basaj, Alicja Gosiewska, Przemyslaw Biecek</p>
<p><strong>International Conference on Neural Information Processing (2019)</strong></p>
Expand All @@ -113,7 +113,7 @@ In this paper we introduce WildNLP - a framework for testing model stability in
#### Software: auditor {-}

<div>
<img src="images/paper_auditor.png">
<img src="images/paper_auditor.png" align="left">
<a href="https://doi.org/10.32614/RJ-2019-036">auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics</a>
<p>Alicja Gosiewska, Przemyslaw Biecek</p>
<p><strong>The R Journal (2019)</strong></p>
Expand Down
2 changes: 0 additions & 2 deletions 30-betabit.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,6 @@
Beta Bit is a series of books about data analysis, data visualisation and machine learning using the adventures of two scientists - mathematician Beta and computer scientist Bit. Together they have interesting experiences analysing a wide variety of data. Because data analysis is one of the most interesting adventures!


## Books {-}

<script>
document.body.classList.add("two-columns")
document.querySelector(".page-inner section > *:first-child").classList.add("two-columns-layout")
Expand Down
27 changes: 0 additions & 27 deletions 40-solutions.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -19,32 +19,5 @@ There are many ways we can help, for example

We would be happy to discuss how we could help with your organisation!

**Trainings**

Based on our experience in the area of Responsible Machine Learning, developed a unique two-day hands-on training. Jump into the topic of eXplainable Artificial Intelligence with our trainers.

<br/>
<br/>

<script>
document.body.classList.add("research-grants-page")
document.querySelector(".page-inner section > *:first-child").classList.add("research-grants-layout")
</script>

**Responsible Machine Learning**

![images/training_xai](images/training_xai.png)


The training is conducted once a month in small groups online. Small groups encourage questions and the interactions within the group.

**Language**

Depending on the group's preference, the hands-on part can be carried out in R (mlr3 + DALEX) or Python (scikit-learn + dalex).

The methodology part does not depend on the language.

**Book your training**

To book a training please contact with [trainings(at)solutions42.ai](mailto:trainings@solutions42.ai?subject=Training%20in%20RML).

Binary file modified images/intro-redteam.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion index.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -828,7 +828,7 @@ These are targeted at progressing responsible machine learning toward a secure a
<div class="two-column-entry-text">
We meet every Monday, at 10 am online or in MI2DataLab (room 044, Faculty of Mathematics and Information Science, Warsaw University of Technology).

Join us at https://meet.google.com/nno-okiz-bxy (or http://meet.drwhy.ai/)
Join us at http://meet.drwhy.ai/

List of topics and materials from past seminars: https://github.com/MI2DataLab/MI2DataLab_Seminarium
</div>
Expand Down

0 comments on commit 1849251

Please sign in to comment.