This is the repository for the code of our paper:
Accepted to RANLP 2023 conference.
python3 run.py --model_name google/electra-small-discriminator --use_automodel --dataset_name cs_srl_e2e --task SRL
--solution_type_cat NLI_M --epoch_num 20 --use_custom_model --max_seq_len 200 --lr 1e-4 --dataset_lang en --end2end--srl_official_eval --save_model
python3 run.py --use_automodel --model_name google/electra-small-discriminator --dataset_name semeval2014_en
--task CAT --solution_type_cat NLI_B --use_custom_model --injection_mode concat-convolution --use_pre_trained_srl_model
--pre_trained_srl_model_path ./data/local_models/electra-small-discriminator_SRL-Pre-trained --max_seq_len 256 --dataset_lang en
python3 run.py --use_automodel --model_name google/electra-small-discriminator --dataset_name en_absa_srl_dataset
--task CAT --solution_type_cat NLI_B --injection_mode multi-task --use_custom_model --dataset_lang en
to see a detailed description of all parameters please run:
python3 run.py --help
Create conda enviroment
-
git clone git@github.com:pauli31/srl-aspect-based-sentiment.git
-
- Download OntoNotes v5.0 corpus and convert it to conll format according to instructions here: https://cemantix.org/data/ontonotes.html
- Place train, dev, and test splits into folder data/datasets/srl/en/
The code can be freely used for academic and research purposes. It is strictly prohibited to use it for any commercial purpose.
If you use our software for academic research, please cite our paper
@inproceedings{priban-steinberger-2022-czech,
title = "Improving Aspect-Based Sentiment with End-to-End Semantic Role Labeling Model",
author = "P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Pra{\v{z}}{\'a}k, Ond{\v{r}}ej",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2023)",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/",
pages = "",
}
Official proceedings citation will follow soon.