LinqGen is project to optimize Linq queries using source generation of user code.
It aims to make allocation-free, specialized Linq queries per your type.
Install from NuGet, both LinqGen as library and LinqGen.Generator as source generator.
<ItemGroup>
<PackageReference Include="LinqGen" Version="0.2.3" />
<PackageReference Include="LinqGen.Generator" Version="0.2.3" />
</ItemGroup>
For Unity, you can install as git package from Unity Package Manager.
https://github.com/cathei/LinqGen.git?path=LinqGen.Unity/Packages/com.cathei.linqgen
Or install via OpenUPM.
openupm add com.cathei.linqgen
Feel free to make an issue, or ask me directly from Discord!
Just add Gen()
in front of your Linq query.
It will generate code to ensure zero-allocation, may have slightly better performance.
using Cathei.LinqGen;
int[] array = new int[] { 1, 2, 3, 4, 5 };
int result = array.Gen()
.Where(x => x % 2 == 0)
.Select(x => x * 2)
.Sum();
For additional performance boost, use struct functions with IStructFunction
interface.
int result = array.Gen()
.Where(new Predicate())
.Select(new Selector())
.Sum();
This is benchmark result for above code. You can see full benchmark results here.
Method | Count | Mean | Error | StdDev | Ratio | Allocated | Alloc Ratio |
---|---|---|---|---|---|---|---|
ForLoop | 100000 | 449.8 us | 4.56 us | 4.27 us | 0.50 | - | 0.000 |
ForEachLoop | 100000 | 444.3 us | 1.48 us | 1.39 us | 0.49 | - | 0.000 |
Linq | 100000 | 899.8 us | 5.65 us | 5.01 us | 1.00 | 105 B | 1.000 |
LinqGenDelegate | 100000 | 576.2 us | 4.43 us | 4.14 us | 0.64 | 1 B | 0.010 |
LinqGenStruct | 100000 | 449.8 us | 4.06 us | 3.60 us | 0.50 | - | 0.000 |
Because of this issue, struct linq implementations with many generics must do runtime lookup. Which makes them not much faster than original Linq.
Also, they have to have bunch of type information and tricks for type inference. Which makes your code hard to read and understand. The error messages or stack trace will be very messy as well.
Using source generation also makes your code friendly for AOT platforms, such as Unity, which has maximum generic depth.
Being source generator makes LinqGen
core library much small than other struct linq implementations, though it may grow as user uses Linq operations.
LinqGen has two part of assembly, LinqGen
and LinqGen.Generator
.
The LinqGen
assembly contains a stub method and types, which helps you autocomplete and helps generator infer types.
After you write a Linq query with stub methods, then LinqGen.Generator
runs and replace the stub methods with generated methods.
How is it possible, while modifying user code is not allowed with source generators?
It's because everything LinqGen.Generator
generates designed to be precede over stub methods on overload resolution.
Yes! LinqGen is aiming to support Unity Burst compiler. Below code is sample of using LinqGen in Burst-compiled job system.
[BurstCompile(CompileSynchronously = true)]
public struct LinqGenSampleJob : IJob
{
[ReadOnly]
public NativeArray<int> Input;
[WriteOnly]
public NativeArray<int> Output;
public void Execute()
{
int index = 0;
foreach (var item in Input.Gen()
.Select(new Selector())
.Order(new Comparer()))
{
Output[index++] = item;
}
}
}
public struct Selector : IStructFunction<int, int>
{
public int Invoke(int arg) => arg * 10;
}
public struct Comparer : IComparer<int>
{
public int Compare(int x, int y) => x - y;
}
- Empty
- Range
- Repeat
- Select
- Where
- Cast, OfType
- Skip, Take
- Distinct
- Order, OrderBy, OrderByDescending
- ThenBy, ThenByDescending
- GroupBy
- Concat
- Prepend, Append
- GetEnumerator
- ToArray, ToList
- Any, All
- First, FirstOrDefault
- Last, LastOrDefault
- Count
- Sum
- Supports duck typing with
+
operator overload
- Supports duck typing with
- Min, Max
- MinBy, MaxBy
- Gen
- Converts IEnumerable to LinqGen enumerable
- AsEnumerable
- Converts LinqGen enumerable to IEnumerable
- RemoveAll
- Element or key types that used with LinqGen must have at least
internal
accessibility. - Struct enumerable should implement
IStructEnumerable<,>
interface. - LinqGen queries should be treated as anonymous type, it cannot be used as return value or instance member. If you have these needs, use
AsEnumerable()
to convert. - LinqGen may not work well when
[InternalsVisibleTo]
is used while both assemblies are using LinqGen. It can be solved when this language feature is implemented.
- Jon Skeet's Edulinq, reimplementing Linq-to-objects.
- Article about alloc-free Linq implementation and limitations.