Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Semi-SL for cls Benchmark Test #3647

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions tests/perf/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@ class Dataset:
group: str
num_repeat: int = 1
extra_overrides: dict | None = None
unlabeled_data_path: Path | None = None

@dataclass
class Criterion:
Expand Down Expand Up @@ -192,6 +193,13 @@ def run(
"--engine.device",
self.accelerator,
]

# Add unlabeled data path if exists
if dataset.unlabeled_data_path is not None:
command.extend(
["--data.config.unlabeled_subset.data_root", str(self.data_root / dataset.unlabeled_data_path)],
)

for key, value in dataset.extra_overrides.get("train", {}).items():
command.append(f"--{key}")
command.append(str(value))
Expand Down
121 changes: 121 additions & 0 deletions tests/perf/test_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,9 @@ class TestPerfSingleLabelClassification(PerfTestBase):
Benchmark.Model(task="classification/multi_class_cls", name="mobilenet_v3_large", category="accuracy"),
Benchmark.Model(task="classification/multi_class_cls", name="deit_tiny", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="dino_v2", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="tv_efficientnet_b3", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="tv_efficientnet_v2_l", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="tv_mobilenet_v3_small", category="other"),
]

DATASET_TEST_CASES = [
Expand Down Expand Up @@ -258,3 +261,121 @@ def test_perf(
criteria=self.BENCHMARK_CRITERIA,
resume_from=fxt_resume_from,
)


class TestPerfSemiSLMultiClass(PerfTestBase):
"""Benchmark single-label classification for Semi-SL task."""

MODEL_TEST_CASES = [ # noqa: RUF012
Benchmark.Model(task="classification/multi_class_cls", name="efficientnet_b0_semisl", category="speed"),
harimkang marked this conversation as resolved.
Show resolved Hide resolved
Benchmark.Model(task="classification/multi_class_cls", name="mobilenet_v3_large_semisl", category="speed"),
Benchmark.Model(task="classification/multi_class_cls", name="efficientnet_v2_semisl", category="accuracy"),
Benchmark.Model(task="classification/multi_class_cls", name="deit_tiny_semisl", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="dino_v2_semisl", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="tv_efficientnet_b3_semisl", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="tv_efficientnet_v2_l_semisl", category="other"),
Benchmark.Model(task="classification/multi_class_cls", name="tv_mobilenet_v3_small_semisl", category="other"),
]

DATASET_TEST_CASES = (
[
Benchmark.Dataset(
name=f"cifar10@{num_label}_{idx}",
path=Path(f"multiclass_classification/semi-sl/cifar10@{num_label}_{idx}/supervised"),
group="cifar10",
harimkang marked this conversation as resolved.
Show resolved Hide resolved
num_repeat=1,
unlabeled_data_path=Path(f"multiclass_classification/semi-sl/cifar10@{num_label}_{idx}/unlabel_data"),
extra_overrides={
"train": {
"data.config.train_subset.subset_name": "train_data",
"data.config.val_subset.subset_name": "val_data",
"data.config.test_subset.subset_name": "val_data",
"deterministic": "True",
},
},
)
for idx in (0, 1, 2)
harimkang marked this conversation as resolved.
Show resolved Hide resolved
for num_label in (4, 10, 25)
]
+ [
Benchmark.Dataset(
name=f"svhn@{num_label}_{idx}",
path=Path(f"multiclass_classification/semi-sl/svhn@{num_label}_{idx}/supervised"),
group="svhn",
harimkang marked this conversation as resolved.
Show resolved Hide resolved
num_repeat=1,
unlabeled_data_path=Path(f"multiclass_classification/semi-sl/svhn@{num_label}_{idx}/unlabel_data"),
extra_overrides={
"train": {
"data.config.train_subset.subset_name": "train_data",
"data.config.val_subset.subset_name": "val_data",
"data.config.test_subset.subset_name": "val_data",
"deterministic": "True",
},
},
)
for idx in (0, 1, 2)
for num_label in (4, 10, 25)
]
+ [
Benchmark.Dataset(
name=f"fmnist@{num_label}_{idx}",
path=Path(f"multiclass_classification/semi-sl/fmnist@{num_label}_{idx}/supervised"),
group="fmnist",
harimkang marked this conversation as resolved.
Show resolved Hide resolved
num_repeat=1,
unlabeled_data_path=Path(f"multiclass_classification/semi-sl/fmnist@{num_label}_{idx}/unlabel_data"),
extra_overrides={
"train": {
"data.config.train_subset.subset_name": "train_data",
"data.config.val_subset.subset_name": "val_data",
"data.config.test_subset.subset_name": "val_data",
"deterministic": "True",
},
},
)
for idx in (0, 1, 2)
for num_label in (4, 10, 25)
]
)

BENCHMARK_CRITERIA = [ # noqa: RUF012
Benchmark.Criterion(name="train/epoch", summary="max", compare="<", margin=0.1),
Benchmark.Criterion(name="train/e2e_time", summary="max", compare="<", margin=0.1),
Benchmark.Criterion(name="val/accuracy", summary="max", compare=">", margin=0.1),
Benchmark.Criterion(name="test/accuracy", summary="max", compare=">", margin=0.1),
Benchmark.Criterion(name="export/accuracy", summary="max", compare=">", margin=0.1),
Benchmark.Criterion(name="optimize/accuracy", summary="max", compare=">", margin=0.1),
Benchmark.Criterion(name="train/iter_time", summary="mean", compare="<", margin=0.1),
Benchmark.Criterion(name="test/iter_time", summary="mean", compare="<", margin=0.1),
Benchmark.Criterion(name="export/iter_time", summary="mean", compare="<", margin=0.1),
Benchmark.Criterion(name="optimize/iter_time", summary="mean", compare="<", margin=0.1),
Benchmark.Criterion(name="test(train)/e2e_time", summary="max", compare=">", margin=0.1),
Benchmark.Criterion(name="test(export)/e2e_time", summary="max", compare=">", margin=0.1),
Benchmark.Criterion(name="test(optimize)/e2e_time", summary="max", compare=">", margin=0.1),
]

@pytest.mark.parametrize(
"fxt_model",
MODEL_TEST_CASES,
ids=lambda model: model.name,
indirect=True,
)
@pytest.mark.parametrize(
"fxt_dataset",
DATASET_TEST_CASES,
ids=lambda dataset: dataset.name,
indirect=True,
)
def test_perf(
self,
fxt_model: Benchmark.Model,
fxt_dataset: Benchmark.Dataset,
fxt_benchmark: Benchmark,
fxt_resume_from: Path | None,
):
self._test_perf(
model=fxt_model,
dataset=fxt_dataset,
benchmark=fxt_benchmark,
criteria=self.BENCHMARK_CRITERIA,
resume_from=fxt_resume_from,
)
Loading