Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[OTE][Releases] Align saliency map media creation over tasks #1447

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 12 additions & 11 deletions external/deep-object-reid/torchreid_tasks/openvino_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,28 +199,29 @@ def infer(self, dataset: DatasetEntity,
if saliency_map.ndim == 2:
# Single saliency map per image, support e.g. EigenCAM use case
actmap = get_actmap(saliency_map, (dataset_item.width, dataset_item.height))
saliency_media = ResultMediaEntity(name="Saliency Map", type="saliency_map",
saliency_media = ResultMediaEntity(name="Saliency Map",
type="saliency_map",
annotation_scene=dataset_item.annotation_scene,
numpy=actmap, roi=dataset_item.roi,
label=predicted_scene.annotations[0].get_labels()[0].label)
numpy=actmap,
roi=dataset_item.roi)
dataset_item.append_metadata_item(saliency_media, model=self.model)
elif saliency_map.ndim == 3:
# Multiple saliency maps per image (class-wise saliency map), support e.g. Recipro-CAM use case
predicted_class_set = set()
for label in predicted_scene.annotations[0].get_labels():
predicted_class_set.add(label.name)
predicted_labels = set()
for scored_label in predicted_scene.annotations[0].get_labels():
predicted_labels.add(scored_label.label)

for class_id, class_wise_saliency_map in enumerate(saliency_map):
class_name_str = self.task_environment.get_labels()[class_id].name
if class_name_str in predicted_class_set:
label = self.task_environment.get_labels()[class_id]
if label in predicted_labels:
# TODO (negvet): Support more advanced use case,
# when all/configurable set of saliency maps is returned
actmap = get_actmap(class_wise_saliency_map, (dataset_item.width, dataset_item.height))
label = predicted_scene.annotations[0].get_labels()[0].label
saliency_media = ResultMediaEntity(name=class_name_str,
saliency_media = ResultMediaEntity(name=label.name,
type="saliency_map",
annotation_scene=dataset_item.annotation_scene,
numpy=actmap, roi=dataset_item.roi,
numpy=actmap,
roi=dataset_item.roi,
label=label)
dataset_item.append_metadata_item(saliency_media, model=self.model)
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -417,28 +417,32 @@ def infer(
dataset_item.append_metadata_item(saliency_media, model=self.model)
elif saliency_map.ndim == 3:
# Multiple saliency maps per image (class-wise saliency map)
predicted_class_set = set()
predicted_labels = set()
for bbox in predicted_scene.annotations:
predicted_class_set.add(bbox.get_labels()[0].name)
scored_label = bbox.get_labels()[0]
predicted_labels.add(scored_label.label)

labels = self.task_environment.get_labels()
num_saliency_maps = saliency_map.shape[0]
if num_saliency_maps == len(labels) + 1:
# Include the background as the last category
labels.append(LabelEntity('background', Domain.DETECTION))

for class_id, class_wise_saliency_map in enumerate(saliency_map):
class_name_str = labels[class_id].name
if class_name_str in predicted_class_set:
label = labels[class_id]
if label in predicted_labels:
# TODO (negvet): Support more advanced use case,
# when all/configurable set of saliency maps is returned
actmap = get_actmap(
class_wise_saliency_map, (dataset_item.width, dataset_item.height)
)
saliency_media = ResultMediaEntity(
name=class_name_str,
name=label.name,
type="saliency_map",
annotation_scene=dataset_item.annotation_scene,
numpy=actmap, roi=dataset_item.roi
numpy=actmap,
roi=dataset_item.roi,
label=label
)
dataset_item.append_metadata_item(saliency_media, model=self.model)
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ def _add_predictions_to_dataset(self, prediction_results, dataset, dump_soft_pre
current_label_soft_prediction = soft_prediction[:, :, label_index]

class_act_map = get_activation_map(current_label_soft_prediction)
result_media = ResultMediaEntity(name='Soft Prediction',
result_media = ResultMediaEntity(name=label.name,
type='soft_prediction',
label=label,
annotation_scene=dataset_item.annotation_scene,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,7 @@ def infer(self,
continue
current_label_soft_prediction = soft_prediction[:, :, label_index]
class_act_map = get_activation_map(current_label_soft_prediction)
result_media = ResultMediaEntity(name='Soft Prediction',
result_media = ResultMediaEntity(name=label.name,
type='soft_prediction',
label=label,
annotation_scene=dataset_item.annotation_scene,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -289,7 +289,6 @@ def _add_predictions_to_dataset(self, prediction_results, dataset, update_progre
annotation_scene=dataset_item.annotation_scene,
numpy=saliency_map,
roi=dataset_item.roi,
label=item_labels[0].label,
)
dataset_item.append_metadata_item(saliency_map_media, model=self._task_environment.model)
elif saliency_map.ndim == 3:
Expand All @@ -298,14 +297,14 @@ def _add_predictions_to_dataset(self, prediction_results, dataset, update_progre
class_wise_saliency_map = get_actmap(
class_wise_saliency_map, (dataset_item.width, dataset_item.height)
)
class_name_str = self._labels[class_id].name
label = self._labels[class_id]
saliency_map_media = ResultMediaEntity(
name=class_name_str,
name=label.name,
type="saliency_map",
annotation_scene=dataset_item.annotation_scene,
numpy=class_wise_saliency_map,
roi=dataset_item.roi,
label=item_labels[0].label,
label=label,
)
dataset_item.append_metadata_item(saliency_map_media, model=self._task_environment.model)
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -327,13 +327,14 @@ def _add_predictions_to_dataset(self, prediction_results, dataset, confidence_th
labels.append(LabelEntity("background", Domain.DETECTION))
for class_id, class_wise_saliency_map in enumerate(saliency_map):
actmap = get_actmap(class_wise_saliency_map, (dataset_item.width, dataset_item.height))
class_name_str = labels[class_id].name
label = labels[class_id]
saliency_media = ResultMediaEntity(
name=class_name_str,
name=label.name,
type="saliency_map",
annotation_scene=dataset_item.annotation_scene,
numpy=actmap,
roi=dataset_item.roi,
label=label,
)
dataset_item.append_metadata_item(saliency_media, model=self._task_environment.model)
else:
Expand Down