Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable hierarchical classification in MPA #1159

Merged
merged 87 commits into from
Jul 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
87 commits
Select commit Hold shift + click to select a range
949c7da
mpa instance-seg efficientnet model template add
harimkang Jun 16, 2022
7e03b03
Merge branch 'develop' of https://github.com/openvinotoolkit/training…
harimkang Jun 16, 2022
974461f
Add C-IL for instance segmentation template
harimkang Jun 21, 2022
0d0ae1c
Merge branch 'develop' of https://github.com/openvinotoolkit/training…
harimkang Jun 21, 2022
d03505d
rebase recent branch
harimkang Jun 23, 2022
06ea9f1
add cli test code & sample code for instance segmentation
harimkang Jun 24, 2022
af9cc41
effnet stats update
harimkang Jun 27, 2022
1822581
rename templates
harimkang Jun 27, 2022
a135811
fix config ins-seg
harimkang Jun 27, 2022
6b7d19e
ins-seg template update
harimkang Jun 28, 2022
a7af277
Apply review suggestions
harimkang Jun 28, 2022
f41e22f
fix line breaks
harimkang Jun 28, 2022
ac16bf8
remove comments
harimkang Jun 28, 2022
10e9bd8
Merge branch 'develop' of https://github.com/openvinotoolkit/training…
harimkang Jun 28, 2022
183aee2
Merge branch 'mpa-instance-seg' of https://github.com/openvinotoolkit…
harimkang Jun 28, 2022
6e56e2d
update mpa commit
harimkang Jun 29, 2022
d80776a
update for SC intg
harimkang Jun 30, 2022
d67a26a
initial settings for template SC all tasks
harimkang Jul 4, 2022
27b837c
add sseg
chuneuny-emily Jul 4, 2022
7d3067c
use original mmseg model template id
chuneuny-emily Jul 4, 2022
ad3aafc
update submodule
chuneuny-emily Jul 4, 2022
704cff9
Change hyperparameters for detection tasks
jaegukhyun Jul 5, 2022
bbd853d
Rebase
JihwanEom Jul 5, 2022
6819320
change MPA commit for enabling cross entropy loss in cls
Jul 5, 2022
34c0b60
rename template all tasks
harimkang Jul 6, 2022
d813d44
Change torchreid & mpa commit for multi-label/h-label
JihwanEom Jul 6, 2022
ba89128
Merge branch 'sc-intg-ins-seg' of https://github.com/openvinotoolkit/…
harimkang Jul 6, 2022
fb7ba65
Enable Hierarchical dataset
JihwanEom Jul 6, 2022
87943ca
Add hierarchical model template.py
JihwanEom Jul 6, 2022
086e339
Log last iteration for SC train graph in MPA
Jul 6, 2022
7dfabcb
Update mpa submodule
chuneuny-emily Jul 6, 2022
9e58201
Add ROTATED_DETECTION model templates
harimkang Jul 7, 2022
36bc6d8
Merge branch 'sc-intg-ins-seg' of https://github.com/openvinotoolkit/…
harimkang Jul 7, 2022
7bef35a
Revert Temp opencv-python req
harimkang Jul 7, 2022
040fac7
Merge branch 'develop' of https://github.com/openvinotoolkit/training…
harimkang Jul 7, 2022
e9c7e74
revert dept
harimkang Jul 7, 2022
6c238c0
Enable hierarchical forward_train
JihwanEom Jul 7, 2022
58ff9f3
Enable hierarchical evaluation
JihwanEom Jul 7, 2022
85d73ce
Classification template file name changed
Jul 7, 2022
ac4c0fc
Disable sampler flag in cls SL
Jul 7, 2022
1c165a0
remove temporal deep reid opencv-python dep
harimkang Jul 7, 2022
dfc2936
Daily MPA commit update
harimkang Jul 8, 2022
e29c95c
rename to Custom_ for SC tests
harimkang Jul 8, 2022
e86e59e
Merge branch 'sc-intg-ins-seg' of https://github.com/openvinotoolkit/…
JihwanEom Jul 8, 2022
2f6d909
Rebase
JihwanEom Jul 8, 2022
a68fde8
Remove cfg for lr estimation in cls task
Jul 8, 2022
0b7ec85
Update MPA commit
JihwanEom Jul 8, 2022
6fca67d
Merge branch 'sc-intg-ins-seg' of https://github.com/openvinotoolkit/…
Jul 8, 2022
6870445
Bug-fix in classification batch-1 training in SC
Jul 8, 2022
e14945d
Re-enable torchreid templates & H-head bugfix
JihwanEom Jul 9, 2022
464bfca
Change MPA commit
JihwanEom Jul 9, 2022
a75a713
H-label dataset & head fix
JihwanEom Jul 9, 2022
8129a56
Change MPA commit
JihwanEom Jul 9, 2022
7bb548a
Change MPA commit
JihwanEom Jul 9, 2022
ab0d33a
Remove multiclass flag
JihwanEom Jul 9, 2022
cf102f7
Drop_last=True when run hierarchical cls.
JihwanEom Jul 9, 2022
8497980
Resolve TODO & Bugs
JihwanEom Jul 10, 2022
670bee6
Rebase
JihwanEom Jul 10, 2022
d2c2a54
Revert templates
JihwanEom Jul 10, 2022
5f749a3
Minor fix
JihwanEom Jul 10, 2022
78d30d1
Template name fix
JihwanEom Jul 10, 2022
8e45570
Hangle the situation when sample size is smaller than batch size
JihwanEom Jul 10, 2022
1c5967c
Update MPA commit
JihwanEom Jul 10, 2022
3343303
Resolve flake8 issues
JihwanEom Jul 11, 2022
36265ce
Update MPA commit
JihwanEom Jul 11, 2022
c87415c
Hangle drop_last when export
JihwanEom Jul 11, 2022
5d7f366
Fix torchreid normalize config
JihwanEom Jul 11, 2022
d4a71ce
Update MPA commit
JihwanEom Jul 11, 2022
ec54ef1
Reflect review
JihwanEom Jul 12, 2022
11c5959
Update MPA commit
JihwanEom Jul 13, 2022
a3e9a3e
Enable 1 depth hierarchical classification via cli
JihwanEom Jul 13, 2022
f1f5b9d
Enable hierarchical classififcation cli
JihwanEom Jul 13, 2022
38c4acd
Temporally upload sample annotation format for h-label cls.
JihwanEom Jul 13, 2022
b52bae4
rebase
JihwanEom Jul 13, 2022
8674cb3
Add MPA submodule
JihwanEom Jul 13, 2022
22a409e
Minor fix
JihwanEom Jul 13, 2022
b29c26b
Revise mistakes
JihwanEom Jul 13, 2022
a32231e
Change MPA commit
JihwanEom Jul 13, 2022
9163fab
Add hierarchical sample & bugfix for multi-label inference
JihwanEom Jul 14, 2022
e17126d
Update MPA commit
JihwanEom Jul 14, 2022
d5b9b03
Add hierarchical cli&api test codes
JihwanEom Jul 18, 2022
778bbbe
Resolve flake8 & multilabel cli test bugfix
JihwanEom Jul 18, 2022
f76dd4d
Reflect review
JihwanEom Jul 18, 2022
40662df
Update MPA commit
JihwanEom Jul 19, 2022
e74538c
Revert images
JihwanEom Jul 19, 2022
2f92279
Change MPA commit
JihwanEom Jul 20, 2022
38fb441
Update MPA commit
JihwanEom Jul 20, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion data/car_tree_bug/annotations/multilabel_car_tree.json
Original file line number Diff line number Diff line change
@@ -1 +1,6 @@
{"images": [["Slide18.PNG", ["car"]], ["Slide19.PNG", ["tree"]], ["Slide16.PNG", ["car", "tree"]]], "classes": ["car", "tree"]}
{"images": [["Slide18.PNG", ["car"]],
["Slide19.PNG", ["tree"]],
["Slide16.PNG", ["car", "tree"]]
],
"classes": ["car", "tree"]
}
21 changes: 20 additions & 1 deletion data/car_tree_bug/annotations/multilabel_default.json
Original file line number Diff line number Diff line change
@@ -1 +1,20 @@
{"images": [["Slide10.PNG", ["tree", "car", "bug"]], ["Slide12.PNG", ["bug", "car", "tree"]], ["Slide14.PNG", ["tree", "bug", "car"]], ["Slide9.PNG", ["bug", "car", "tree"]], ["Slide11.PNG", ["car", "tree", "bug"]], ["Slide17.PNG", ["bug", "tree"]], ["Slide7.PNG", ["tree", "car", "bug"]], ["Slide6.PNG", ["car", "tree", "bug"]], ["Slide4.PNG", ["bug", "tree", "car"]], ["Slide20.PNG", ["bug"]], ["Slide5.PNG", ["bug", "tree", "car"]], ["Slide1.PNG", ["car", "bug", "tree"]], ["Slide3.PNG", ["car", "tree", "bug"]], ["Slide13.PNG", ["bug", "car", "tree"]], ["Slide2.PNG", ["bug", "car", "tree"]], ["Slide8.PNG", ["car", "tree", "bug"]], ["Slide15.PNG", ["bug", "car"]]], "classes": ["car", "tree", "bug"]}
{"images": [["Slide10.PNG", ["tree", "car", "bug"]],
["Slide12.PNG", ["bug", "car", "tree"]],
["Slide14.PNG", ["tree", "bug", "car"]],
["Slide9.PNG", ["bug", "car", "tree"]],
["Slide11.PNG", ["car", "tree", "bug"]],
["Slide17.PNG", ["bug", "tree"]],
["Slide7.PNG", ["tree", "car", "bug"]],
["Slide6.PNG", ["car", "tree", "bug"]],
["Slide4.PNG", ["bug", "tree", "car"]],
["Slide20.PNG", ["bug"]],
["Slide5.PNG", ["bug", "tree", "car"]],
["Slide1.PNG", ["car", "bug", "tree"]],
["Slide3.PNG", ["car", "tree", "bug"]],
["Slide13.PNG", ["bug", "car", "tree"]],
["Slide2.PNG", ["bug", "car", "tree"]],
["Slide8.PNG", ["car", "tree", "bug"]],
["Slide15.PNG", ["bug", "car"]]
],
"classes": ["car", "tree", "bug"]
}
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ lr_finder:
n_trials: 15

model:
name: 'mobilenetv3_large_21k'
name: 'mobilenetv3_large'
type: 'multihead'
pretrained: True
save_all_chkpts: False
Expand All @@ -26,8 +26,8 @@ data:
root: './'
height: 224
width: 224
norm_mean: [0, 0, 0]
norm_std: [1, 1, 1]
norm_mean: [0.485, 0.456, 0.406]
norm_std: [0.229, 0.224, 0.225]
save_dir: 'output/mulitihead/mobilenetv3_large_1'
workers: 6
transforms:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,8 @@ data:
root: './'
height: 224
width: 224
norm_mean: [0, 0, 0]
norm_std: [1, 1, 1]
norm_mean: [0.485, 0.456, 0.406]
norm_std: [0.229, 0.224, 0.225]
save_dir: 'output/mulitilabel/mobilenetv3_large'
workers: 6
transforms:
Expand Down
37 changes: 27 additions & 10 deletions external/deep-object-reid/torchreid_tasks/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@

from torchreid.utils import set_model_attr, get_model_attr


harimkang marked this conversation as resolved.
Show resolved Hide resolved
class ClassificationType(Enum):
MULTICLASS = auto()
MULTILABEL = auto()
Expand Down Expand Up @@ -121,16 +122,32 @@ def _load_text_annotation(annot_path, data_dir):
out_data = []
with open(annot_path) as f:
annotation = json.load(f)
if not 'label_groups' in annotation:
if 'hierarchy' not in annotation:
all_classes = sorted(annotation['classes'])
annotation_type = ClassificationType.MULTILABEL
groups = [[c] for c in all_classes]
else: # load multihead
groups = annotation['label_groups']
else: # load multihead
all_classes = []
for g in groups:
for c in g:
all_classes.append(c)
groups = annotation['hierarchy']

def add_subtask_labels(group):
if isinstance(group, dict) and 'subtask' in group:
subtask = group['subtask']
if isinstance(subtask, list):
for task in subtask:
for task_label in task['labels']:
all_classes.append(task_label)
elif isinstance(subtask, dict):
for task_label in subtask['labels']:
all_classes.append(task_label)
add_subtask_labels(subtask)
elif isinstance(group, list):
for task in group:
add_subtask_labels(task)
for group in groups:
for label in group['labels']:
all_classes.append(label)
add_subtask_labels(group)
annotation_type = ClassificationType.MULTIHEAD

images_info = annotation['images']
Expand Down Expand Up @@ -258,7 +275,7 @@ def get_multihead_class_info(label_schema: LabelSchemaEntity):
head_idx_to_logits_range[i] = (last_logits_pos, last_logits_pos + len(g))
last_logits_pos += len(g)
for j, c in enumerate(g):
class_to_idx[c] = (i, j) # group idx and idx inside group
class_to_idx[c] = (i, j) # group idx and idx inside group
num_single_label_classes += 1

# other labels are in multilabel group
Expand Down Expand Up @@ -302,7 +319,7 @@ def __init__(self, ote_dataset: DatasetEntity, labels: List[LabelEntity], multil
if item_labels:
if not self.hierarchical:
for ote_lbl in item_labels:
if not ote_lbl in ignored_labels:
if ote_lbl not in ignored_labels:
class_indices.append(self.label_names.index(ote_lbl.name))
else:
class_indices.append(-1)
Expand All @@ -318,12 +335,12 @@ def __init__(self, ote_dataset: DatasetEntity, labels: List[LabelEntity], multil
if group_idx < num_cls_heads:
class_indices[group_idx] = in_group_idx
else:
if not ote_lbl in ignored_labels:
if ote_lbl not in ignored_labels:
class_indices[num_cls_heads + in_group_idx] = 1
else:
class_indices[num_cls_heads + in_group_idx] = -1

else: # this supposed to happen only on inference stage or if we have a negative in multilabel data
else: # this supposed to happen only on inference stage or if we have a negative in multilabel data
if self.mixed_cls_heads_info:
class_indices = [-1]*(self.mixed_cls_heads_info['num_multiclass_heads'] + \
self.mixed_cls_heads_info['num_multilabel_classes'])
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = [
'../../../submodule/models/classification/ote_efficientnet_b0_hierarchical.yaml',
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = [
'../../../submodule/models/classification/ote_efficientnet_v2_s_hierarchical.yaml',
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = [
'../../../submodule/models/classification/ote_mobilenet_v3_large_075_hierarchical.yaml',
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = [
'../../../submodule/models/classification/ote_mobilenet_v3_large_hierarchical.yaml',
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = [
'../../../submodule/models/classification/ote_mobilenet_v3_small_hierarchical.yaml',
]
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from typing import List, Optional

import torch
import numpy as np
from mpa import MPAConstants

from ote_sdk.configuration import cfg_helper
Expand All @@ -34,12 +35,14 @@
from ote_sdk.entities.model import (ModelFormat, ModelOptimizationType)
from ote_sdk.serialization.label_mapper import label_schema_to_bytes
from ote_sdk.entities.scored_label import ScoredLabel
from ote_sdk.utils.labels_utils import get_empty_label
from torchreid_tasks.utils import TrainingProgressCallback
from torchreid_tasks.utils import OTELoggerHook
from torchreid_tasks.train_task import OTEClassificationTrainingTask
from torchreid_tasks.utils import get_multihead_class_info as get_hierarchical_info
from mpa_tasks.apis import BaseTask, TrainType
from mpa_tasks.apis.classification import ClassificationConfig
from mpa.utils.config_utils import MPAConfig
from mpa.stage import Stage
from mpa.utils.logger import get_logger
from ote_sdk.entities.label import Domain

Expand All @@ -63,38 +66,24 @@ def __init__(self, task_environment: TaskEnvironment):
self._labels = task_environment.get_labels(include_empty=True)
else:
self._labels = task_environment.get_labels(include_empty=False)
self._empty_label = get_empty_label(task_environment.label_schema)
self._multilabel = False
self._hierarchical = False

self._multilabel = len(task_environment.label_schema.get_groups(False)) > 1 and \
len(task_environment.label_schema.get_groups(False)) == \
len(task_environment.get_labels(include_empty=False)) # noqa:E127

self._hierarchical = False
self._hierarchical_info = None
if not self._multilabel and len(task_environment.label_schema.get_groups(False)) > 1:
self._hierarchical = True
torchreid_env = self.convert_to_torchreid_env(task_environment)
self.torchreid_train_task = OTEClassificationTrainingTask(torchreid_env)

@staticmethod
def convert_to_torchreid_env(task_env):
model_template = task_env.model_template
rename_dict = {'model-preparation-algorithm': 'deep-object-reid',
'classification' : 'ote_custom_classification',
'_cls_incr' : ''
}

for key, val in rename_dict.items():
model_template.model_template_path = model_template.model_template_path.replace(key, val)
model_template.entrypoints.base = 'torchreid_tasks.train_task.OTEClassificationTrainingTask'
model_template.framework = 'OTEClassification v1.2.3'
return task_env
self._hierarchical_info = get_hierarchical_info(task_environment.label_schema)

def infer(self,
dataset: DatasetEntity,
inference_parameters: Optional[InferenceParameters] = None
) -> DatasetEntity:
logger.info('called infer()')
if self._hierarchical:
self = self.torchreid_train_task
return self.infer(dataset, inference_parameters)
stage_module = 'ClsInferrer'
self._data_cfg = self._init_test_data_cfg(dataset)
dataset = dataset.with_empty_annotations()
Expand All @@ -109,19 +98,52 @@ def infer(self,

dataset_size = len(dataset)
for i, (dataset_item, prediction_item) in enumerate(zip(dataset, predictions)):
label = []
item_labels = []
pos_thr = 0.5

if any(np.isnan(prediction_item)):
logger.info('Nan in prediction_item.')

if self._multilabel:
pos_thr = 0.5
if max(prediction_item) < pos_thr:
logger.info('Confidence is smaller than pos_thr, empty_label will be appended to item_labels.')
item_labels.append(ScoredLabel(self._empty_label, probability=1.))
continue
for cls_idx, pred_item in enumerate(prediction_item):
if pred_item > pos_thr:
cls_label = ScoredLabel(self.labels[cls_idx], probability=float(pred_item))
label.append(cls_label)
item_labels.append(cls_label)

elif self._hierarchical:
for head_idx in range(self._hierarchical_info['num_multiclass_heads']):
logits_begin, logits_end = self._hierarchical_info['head_idx_to_logits_range'][head_idx]
head_logits = prediction_item[logits_begin : logits_end]
head_pred = np.argmax(head_logits) # Assume logits already passed softmax
label_str = self._hierarchical_info['all_groups'][head_idx][head_pred]
ote_label = next(x for x in self._labels if x.name == label_str)
item_labels.append(ScoredLabel(label=ote_label, probability=float(head_logits[head_pred])))

if self._hierarchical_info['num_multilabel_classes']:
logits_begin, logits_end = self._hierarchical_info['num_single_label_classes'], -1
head_logits = prediction_item[logits_begin : logits_end]
for logit_idx, logit in enumerate(head_logits):
if logit > pos_thr: # Assume logits already passed sigmoid
label_str = self._hierarchical_info['all_groups'][self._hierarchical_info['num_multiclass_heads']+logit_idx][0]
ote_label = next(x for x in self._labels if x.name == label_str)
item_labels.append(ScoredLabel(label=ote_label, probability=float(logit)))
item_labels = self._task_environment.label_schema.resolve_labels_probabilistic(item_labels)
if not item_labels:
logger.info('item_labels is empty.')
item_labels.append(ScoredLabel(self._empty_label, probability=1.))

else:
label_idx = prediction_item.argmax()
cls_label = ScoredLabel(self._labels[label_idx], probability=float(prediction_item[label_idx]))
label.append(cls_label)
dataset_item.append_labels(label)
item_labels.append(cls_label)

dataset_item.append_labels(item_labels)
update_progress_callback(int(i / dataset_size * 100))

return dataset

def evaluate(self,
Expand All @@ -141,10 +163,6 @@ def export(self,
export_type: ExportType,
output_model: ModelEntity):
logger.info('Exporting the model')
if self._hierarchical:
self = self.torchreid_train_task
self.export(export_type, output_model)
return
if export_type != ExportType.OPENVINO:
raise RuntimeError(f'not supported export type {export_type}')
output_model.model_format = ModelFormat.OPENVINO
Expand Down Expand Up @@ -206,10 +224,15 @@ def _init_model_cfg(self):
base_dir = os.path.abspath(os.path.dirname(self.template_file_path))
if self._multilabel:
cfg_path = os.path.join(base_dir, 'model_multilabel.py')
elif self._hierarchical:
cfg_path = os.path.join(base_dir, 'model_hierarchical.py')
else:
cfg_path = os.path.join(base_dir, 'model.py')
cfg = MPAConfig.fromfile(cfg_path)
cfg.model.multilabel = self._multilabel
cfg.model.hierarchical = self._hierarchical
if self._hierarchical:
cfg.model.head.hierarchical_info = self._hierarchical_info
return cfg

def _init_test_data_cfg(self, dataset: DatasetEntity):
Expand Down Expand Up @@ -250,11 +273,24 @@ def patch_color_conversion(pipeline):

if self._multilabel:
cfg.type = 'MPAMultilabelClsDataset'
elif self._hierarchical:
cfg.type = 'MPAHierarchicalClsDataset'
cfg.hierarchical_info = self._hierarchical_info
if subset == 'train':
cfg.drop_last = True # For stable hierarchical information indexing
else:
cfg.type = 'MPAClsDataset'

# In train dataset, when sample size is smaller than batch size
if subset == 'train' and self._data_cfg:
train_data_cfg = Stage.get_train_data_cfg(self._data_cfg)
if (len(train_data_cfg.get('ote_dataset', [])) < self._recipe_cfg.data.get('samples_per_gpu', 2)):
cfg.drop_last = False

cfg.domain = domain
cfg.ote_dataset = None
cfg.labels = None
cfg.empty_label = self._empty_label
for pipeline_step in cfg.pipeline:
if subset == 'train' and pipeline_step.type == 'Collect':
pipeline_step = BaseTask._get_meta_keys(pipeline_step)
Expand All @@ -264,6 +300,8 @@ def _patch_evaluation(self, config: MPAConfig):
cfg = config.evaluation
if self._multilabel:
cfg.metric = ['accuracy-mlc', 'mAP', 'CP', 'OP', 'CR', 'OR', 'CF1', 'OF1']
elif self._hierarchical:
cfg.metric = ['MHAcc', 'avgClsAcc', 'mAP']
else:
cfg.metric = ['accuracy', 'class_accuracy']

Expand Down Expand Up @@ -302,10 +340,6 @@ def train(self,
output_model: ModelEntity,
train_parameters: Optional[TrainParameters] = None):
logger.info('train()')
if self._hierarchical:
self = self.torchreid_train_task
self.train(dataset, output_model, train_parameters)
return
# Check for stop signal between pre-eval and training.
# If training is cancelled at this point,
if self._should_stop:
Expand Down Expand Up @@ -383,6 +417,8 @@ def _generate_training_metrics_group(self, learning_curves) -> Optional[List[Met

if self._multilabel:
metric_key = 'val/accuracy-mlc'
elif self._hierarchical:
metric_key = 'val/MHAcc'
else:
metric_key = 'val/accuracy_top-1'

Expand Down
Loading